
The Postgres relational database management system and
Application Programming Interface

COEN-317: Distributed Systems

Robert Bruce

Department of Computer Science and Engineering

Santa Clara University

Introduction to Postgres

Postgres is an open source, ANSI SQL compliant relational database management system.

Additional information about Postgres is at the web address http://www.postgresql.org/about/

http://www.postgresql.org/about/

Postgres: command line admin interface

This command creates a new database called coen317:

create database coen317

Postgres tables: structure management

Postgres provides standard SQL commands for tables:

create table: creates a new table.

alter table: updates the structure of a table.

drop table: deletes the structure of a table (any data in the table is also deleted).

Postgres: columns types we will use

Postgres contains a variety of fields (columns). We'll be using the following types:

bigserial: auto-incrementing eight-byte integer.

integer: integer data type.

varchar: variable length character.

timestamp: date and time.

Postgres tables: data management

Postgres provides standard SQL commands for managing the data stored in tables. These commands
do not change the structure of the tables.

select from table: retrieves a row of data from table.

insert into table: adds a new row of data to table.

update table: updates data in table.

delete from table: deletes data from table.

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

Primary key

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

Primary key

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

Primary key

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

The yellow highlighted

columns (fields) form a

relation. This relation ties the

STUDENTS and GRADES

tables together.

Primary keys and foreign keys

STUDENTS

student_id bigserial

first_name varchar(100)

last_name varchar(100)

GRADES

student_id bigint

course_id bigint

grade varchar(2)

COURSES

course_id bigserial

course_name varchar(255)

course_description varchar(1024)

The yellow highlighted

columns (fields) form a

relation. This relation ties the

GRADES and COURSES

tables together.

SQL WHERE clause

The WHERE clause is a powerful SQL command for defining a condition. This condition must be
satisfied (evaluated to Boolean TRUE) before the appropriate action is taken. The WHERE clause can
be applied to SELECT, INSERT, UPDATE, and DELETE commands. Examples:

SELECT student_id FROM students WHERE last_name = "BRUCE";

SELECT first_name, last_name FROM students, grades WHERE student.student_id = grades.student_id

AND grades.grade = "A";

SELECT course_id, course_description FROM courses;

UPDATE courses SET course_description = "Distributed Systems" WHERE course_id = 317;

SQL ORDER clause

The ORDER clause follows a WHERE clause. It only applies to SELECT statements. The ORDER
clause provides a means of sorting the output in ASCending or DESCending order based on the
columns SELECTed. Examples:

SELECT student_id FROM students WHERE last_name = "BRUCE" ORDER BY student_id ASC;

SELECT first_name, last_name FROM students, grades WHERE student.student_id = grades.student_id

AND grades.grade = "A" ORDER BY last_name DESC;

SELECT course_id, course_description FROM courses ORDER BY course_id ASC;

SQL DISTINCT clause

The DISTINCT clause is used in SELECT statements. It removes duplicate rows of data. Each row
returned is thus unique or DISTINCT from each other. Example:

SELECT DISTINCT last_name FROM students ORDER BY last_name;

Retrieving auto incremented bigserial column from last INSERT

The BIGSERIAL datatype is an unsigned integer datatype that automatically increments its column
value atomically when a new row of data is INSERTed. This is a very useful operation when the
bigserial column needs to be unique and be the primary key. Primary keys, by definition, must be
unique!

Since this operation is atomic, no race conditions can occur. This is very important when developing
applications in highly scaled environments with many concurrent users!

Retrieving the last INSERTed serial number for an INSERT operation is easy. Here's how to do so:

INSERT INTO students (first_name, last_name) VALUES ("ROB", "BRUCE") RETURNING student_id;

Postgres C application programming interface

Step 1: Connect to the Postgres database management system with the Pqconnectdb() function. If authentication is successful
and a connection is made to the Postgres database, Pqconnectdb() function will return a handle to the connection. In the example
below, that handle is db_connection.

PGconn *db_connection;

PGresult *db_result;

db_connection = PQconnectdb("host = 'localhost' dbname = 'coen317' user = 'postgres' password =

'PASSWORD_TO_ACCESS_THIS_DATABASE'");

if (PQstatus(db_connection) != CONNECTION_OK)

{

printf ("Connection to database failed: %s", PQerrorMessage(db_connection));

PQfinish (db_connection);

exit (EXIT_FAILURE);

}

Postgres C application programming interface (API)

Step 2: Now that a Postgres database handle has been established, we can issue standard SQL commands through the handle,
db_connection. Let’s issue a standard SELECT command:

SELECT students.student_id, students.first_name, students.last_name FROM students ORDER BY students.student_id
ASC

Postgres C application programming interface (API)

strncpy (&db_statement[0], "SELECT students.student_id, students.first_name, students.last_name FROM students

ORDER BY students.student_id ASC", MAX_DB_STATEMENT_BUFFER_LENGTH);

db_result = PQexec (db_connection, &db_statement[0]);

if (PQresultStatus(db_result) == PGRES_TUPLES_OK)

{

num_rows = Pqntuples(db_result);

if (num_rows == 0)

{

printf ("database is empty");

}

else

{

for (row = 0; row < num_rows; row++)

{

printf ("%s %s %s\n", PQgetvalue (db_result, row, 0), PQgetvalue (db_result, row, 1), PQgetvalue

(db_result, row, 2));

}

}

}

Postgres C application programming interface (API)

strncpy (&db_statement[0], "SELECT students.student_id, students.first_name, students.last_name FROM students

ORDER BY students.student_id ASC", MAX_DB_STATEMENT_BUFFER_LENGTH);

db_result = PQexec (db_connection, &db_statement[0]);

if (PQresultStatus(db_result) == PGRES_TUPLES_OK)

{

num_rows = Pqntuples(db_result);

if (num_rows == 0)

{

printf ("database is empty");

}

else

{

for (row = 0; row < num_rows; row++)

{

printf ("%s %s %s\n", PQgetvalue (db_result, row, 0), PQgetvalue (db_result, row, 1), PQgetvalue

(db_result, row, 2));

}

}

}

PQexec() executes the SQL command we entered.

Postgres C application programming interface (API)

strncpy (&db_statement[0], "SELECT students.student_id, students.first_name, students.last_name FROM students

ORDER BY students.student_id ASC", MAX_DB_STATEMENT_BUFFER_LENGTH);

db_result = PQexec (db_connection, &db_statement[0]);

if (PQresultStatus(db_result) == PGRES_TUPLES_OK)

{

num_rows = Pqntuples(db_result);

if (num_rows == 0)

{

printf ("database is empty");

}

else

{

for (row = 0; row < num_rows; row++)

{

printf ("%s %s %s\n", PQgetvalue (db_result, row, 0), PQgetvalue (db_result, row, 1), PQgetvalue

(db_result, row, 2));

}

}

}

PQresultStatus() informs our program if the SQL command executed successfully (i.e. there were no syntax

errors in our query).

Postgres C application programming interface (API)

strncpy (&db_statement[0], "SELECT students.student_id, students.first_name, students.last_name FROM students

ORDER BY students.student_id ASC", MAX_DB_STATEMENT_BUFFER_LENGTH);

db_result = PQexec (db_connection, &db_statement[0]);

if (PQresultStatus(db_result) == PGRES_TUPLES_OK)

{

num_rows = Pqntuples(db_result);

if (num_rows == 0)

{

printf ("database is empty");

}

else

{

for (row = 0; row < num_rows; row++)

{

printf ("%s %s %s\n", PQgetvalue (db_result, row, 0), PQgetvalue (db_result, row, 1), PQgetvalue

(db_result, row, 2));

}

}

}

Pqntuples() returns the number of results (rows) from the SQL

command.

Postgres C application programming interface (API)

strncpy (&db_statement[0], "SELECT students.student_id, students.first_name, students.last_name FROM students

ORDER BY students.student_id ASC", MAX_DB_STATEMENT_BUFFER_LENGTH);

db_result = PQexec (db_connection, &db_statement[0]);

if (PQresultStatus(db_result) == PGRES_TUPLES_OK)

{

num_rows = Pqntuples(db_result);

if (num_rows == 0)

{

printf ("database is empty");

}

else

{

for (row = 0; row < num_rows; row++)

{

printf ("%s %s %s\n", PQgetvalue (db_result, row, 0), PQgetvalue (db_result, row, 1), PQgetvalue

(db_result, row, 2));

}

}

}

PQgetvalue() returns a row and column of data from the results of

the SQL query.

Postgres C application programming interface

Step 3: Before a program exits, the Postgres database handle must be released and the connection to the database closed. This is
accomplished by issuing the following commands:

db_result = PQexec (db_connection, "CLOSE myportal");

PQclear (db_result);

PQfinish (db_connection);

Programming project hint

Use Postgres to create a unique video identification number (video_id) to associate with each uploaded video for processing.

Example:

I upload an mpeg4 video for my project. It is a ten second video encoded at thirty frames per second. Postgres creates a video_id of 12. I would therefore save this

video on my server as:

12.mp4

When I convert the video to 300 still images (for computer vision processing), the filenames would be:

12.1.png, 12.2.png, 12.3.png, … 12.298.png, 12.299.png, 12.300.png

When I draw a face mesh on each of these images, the filenames would be:

mesh-12.1.png, mesh-12.2.png, mesh-12.3.png, … mesh-12.298.png, mesh-12.299.png, mesh-12.300.png

Lastly, combining these still images with meshes into an mpeg movie, the resultant video would be:

mesh-12.mp4

For further reading

Postgres source code and documentation:

http://www.postgresql.org/

A handy list of Postgres commands (if you are using the command line interface):

https://www.postgresqltutorial.com/postgresql-cheat-sheet/

How to install and configure Postgres on Ubuntu 22.04:

https://www.digitalocean.com/community/tutorials/how-to-install-postgresql-on-ubuntu-22-04-quickstart

How to connect Postgres from Python:

https://www.postgresqltutorial.com/postgresql-python/

My example C program on Camino (under files folder : example programs : postgres example):

db_menu.c

https://www.postgresqltutorial.com/postgresql-cheat-sheet/
https://www.digitalocean.com/community/tutorials/how-to-install-postgresql-on-ubuntu-22-04-quickstart
https://www.postgresqltutorial.com/postgresql-python/

	Slide 1: The Postgres relational database management system and Application Programming Interface
	Slide 2: Introduction to Postgres
	Slide 3: Postgres: command line admin interface
	Slide 4: Postgres tables: structure management
	Slide 5: Postgres: columns types we will use
	Slide 6: Postgres tables: data management
	Slide 7: Primary keys and foreign keys
	Slide 8: Primary keys and foreign keys
	Slide 9: Primary keys and foreign keys
	Slide 10: Primary keys and foreign keys
	Slide 11: Primary keys and foreign keys
	Slide 12: Primary keys and foreign keys
	Slide 13: SQL WHERE clause
	Slide 14: SQL ORDER clause
	Slide 15: SQL DISTINCT clause
	Slide 16: Retrieving auto incremented bigserial column from last INSERT
	Slide 17: Postgres C application programming interface
	Slide 18: Postgres C application programming interface (API)
	Slide 19: Postgres C application programming interface (API)
	Slide 20: Postgres C application programming interface (API)
	Slide 21: Postgres C application programming interface (API)
	Slide 22: Postgres C application programming interface (API)
	Slide 23: Postgres C application programming interface (API)
	Slide 24: Postgres C application programming interface
	Slide 25: Programming project hint
	Slide 26: For further reading

