
Interprocess Communication

COEN-317: Distributed Systems

Robert Bruce

Department of Computer Science and Engineering
Santa Clara University



Why care about Interprocess Communication?

Interprocess Communication (IPC) impacts distributed systems:

• IPC establishes a means of sharing data between processes.

• IPC enables process synchronization.



Two models for Interprocess Communication

1. Remote Procedure Call: RPC [1]

• Allows an application to run on a remote machine while returning the output to a local machine 
[2].

2. Message-Oriented Middleware: MOM [1]

• A form of persistent asynchronous communication that is independent of the sending or 
receiving processes [3].

[1] p. 163, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 174, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[3] p. 206, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Remote Procedure Call: RPC

Remote Procedure Call:

1. Machine A executes a process on machine B [1].

2. Machine A suspends operations until machine B completes the process [1].

3. Machine A receives results from machine B once the process is completed [1].

What is the advantage with Remote Procedure Call?

• Simplicity: the communication layer is hidden between machine A and machine B [3]

What are the disadvantages with Remote Procedure Call?

• Reliability: if machine A or machine B fails, the entire RPC fails [1].

• Inefficiency: machine A is suspended while waiting for machine B to execute the process [2].

[1] p. 174, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 185, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[3] p. 193, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Communication via sockets

Sockets:

• Enables the sending and receiving of data between two machines via a port [1].

• Created by Berkeley Unix in 1970s [1].

• Sockets are integrated into the POSIX standard [1].

Socket operations:

• socket: "creates a new communication end point" [2].

• bind: "Attach a local address to a socket" [2].

• listen: "Tell operating system what the maximum number of pending connection requests should be" 

[2].

• accept: "Block caller until a connection request arrives" [2].

• connect: "Actively attempt to establish a connection" [2].

• send: "Send some data over the connection" [2]

• receive: "Receive soem data over the connection" [2]

• close: "Release the connection" [2]

[1] p. 193, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 194, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Communication between two machines via socket

[1] p. 195, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

listenbindsocket accept receive send close

Server [1]

Client [1]

socket connect send receive close



Socket communication via ZeroMQ

ZeroMQ is a socket-based library and framework.

Advantages of ZeroMQ over Berkeley sockets:

• ZeroMQ simplifies communication by establishing types of socket-pair communication [1]: 

1.request-reply 

2.publish-subscribe 

3.pipeline

• ZeroMQ supports many-to-one communication as opposed to one-to-one with Berkeley sockets [1].

• ZeroMQ supports one-to-many communication (multi-casting) [1].

• ZeroMQ is asynchronous [1].

Machine A can send a message before a recipient machine B has established a connection to machine A.

[1] p. 199, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Socket communication via ZeroMQ

ZeroMQ features three communication models:

• request-reply: "used in traditional client-server communication" [1]

• publish-subscribe: "clients subscribe to specific messages published by servers" [2]

• pipeline: a push-pull model in which one or more clients (pull) read messages from a server (push) 

[3]. 

[1] p. 200, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 201, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[3] p. 202, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Message-Oriented Middleware: MOM 

Message-oriented middleware: A persistent, asynchronous form of communication [1].

• Neither the sender nor receiver must wait for a message to be delivered [1].

• Messages are reliably sent and temporary stored for later retrieval by the recipient [1].

• There is no guarantee the recipient will read the message [1].

[1] p. 206, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Message-Oriented Middleware: MOM 

Messages-Oriented Middleware are stored in a message queue.

The following commands enable management of a message queue:

• put: "Append a message to a specified queue" [1].

• get: "Block until the specified queue is nonempty, and remove the first message" [1].

• poll: "Check a specified queue for messages, and remove the first. Never block" [1].

• notify: "Install a handler to be called when a message is put into the specified queue" [1].

[1] p. 208, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Message-Oriented Middleware: examples

WebSphere MQ (message queue) [1]:

• Developed by IBM.

• Comprised of: queue manager, message channel agent, and message channels.

AMQP (Advanced Message Queuing Protocol) [1]:

• An open-standard for message queuing systems [1].

• Comprised of: "applications, queue managers, and queues" [1].

• Messaging utilizes a consumer-producer model [2]. 

• Supports persistent messaging [2].

• Implemented through RabbitMQ and Apache's Qpid [1].

[1] p. 218, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 220, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



Network topology and multicast communication

Broadcasting: sending messages to every node in a network.

Multicasting: sending messages to only a subset of a network.

Tree-based network:

• Organize the network nodes in a hierarchical tree network [1].

• Some nodes rely on other nodes to forward messages through the hierarchy [1]. 

• This network topology can lead to failure in messaging.

Mesh-based network :

• Organize the network nodes in a non-hierarchical mesh network [2]. 

• Redundant network connections results in more than one path between nodes [2].

• This network topology offers overlap between network connections and tends to be resilient when network 

nodes fail [2]. 

[1] pp. 221-222, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.

[2] p. 222, Distributed Systems (3rd edition) by Maarten van Steen and Andrew S. Tanenbaum.



For further reading...

1. Unix Network Programming, Volume 2: Interprocess Communications (second edition) by W. Richard Stevens

2. ZeroMQ

https://zeromq.org/

3. Advanced Message Queuing Protocol

https://www.amqp.org/

4. Rabbit MQ

https://www.rabbitmq.com/

https://zeromq.org/
https://www.amqp.org/
https://www.rabbitmq.com/

	Slide 1: Interprocess Communication
	Slide 2: Why care about Interprocess Communication?
	Slide 3: Two models for Interprocess Communication
	Slide 4: Remote Procedure Call: RPC
	Slide 5: Communication via sockets
	Slide 6: Communication between two machines via socket
	Slide 7: Socket communication via ZeroMQ
	Slide 8: Socket communication via ZeroMQ
	Slide 9: Message-Oriented Middleware: MOM 
	Slide 10: Message-Oriented Middleware: MOM 
	Slide 11: Message-Oriented Middleware: examples
	Slide 12: Network topology and multicast communication
	Slide 13: For further reading...

