
User interfaces for distributed systems

COEN-317: Distributed Systems

Robert Bruce

Department of Computer Science and Engineering
Santa Clara University

Motivation

Why develop a Graphical User Interface (GUI) for distributed systems?

1. To monitor the distributed system

• Ordinary user may view a queue to determine ETA (estimated time to completion) of tasks.

• Administrative users may view log files and job completion statistics to identify anomalies such as machine failures.

• Developers of distributed systems may monitor the system for testing purposes to diagnose programming errors.

2. To manage the distributed system

• Administrative users may override the queue by disabling or suspending jobs manually.

GUI development for distributed systems: practical advice

Suggestions when developing a GUI for distributed systems:

• Choose a graphical universal interface that is operating system agnostic (i.e. cross platform) and hardware independent.

• Develop multiple levels of user interface functionality in your distributed system: read-only, user, administrator, developer.

GUI development for distributed systems: practical advice

There are many choices for GUI toolkit (e.g. Qt, GTK, Java Swing, wxWidgets, etc.).

• Unfortunately, GUI toolkits can fall behind in development and/or become obscure or no longer supported.

In my experience, the best route is a web-based (HTML) interface for distributed systems.

• Web interfaces are quite capable of handling the tasks necessary to monitor and manage a distributed system.

• HTML is well documented, ubiquitous, and backed by a standards committee (W3C).

• HTML support tends to degrade gracefully as the HTML standard evolves.

For non-web based GUI toolkit, I recommend:

• Qt

Web-based GUI: advantages and disadvantages

What are the advantages with web-based interfaces?

• Capable of rendering user-interfaces and content cross-platform on both desktop and mobile devices, tablets, etc.

• Operating system independent

• Hardware independent

What are the disadvantages with web-based interfaces?

• Web-based applications can become unnecessarily complicated with bloated front-end Javascript libraries.

• HTTP is a stateless protocol. You will need to implement some sort of session management to maintain state in sophisticated
web-based interfaces.

Architectural design considerations for web-based interfaces:

• All processing split between server-side and client-side.

• All processing conducted one client-side using Javascript and CSS or Java.

Web-based GUI: Beginning development suggestions

When you begin developing web-based user interfaces for distributed systems:

• Keep the interface sparse.

• Start with a simple, fixed-resolution interface. I suggest implementing the interface on a desktop or tablet display with a large
screen. Then test that interface to see if it is comfortable to view and interact with.

• Design the user interface in stages. For example, begin with a read-only interface. Then create a management interface (which
would require login functionality authentication).

• Once the interface layout is acceptable, begin designing interfaces for various screen resolutions.

• In time you can make the interface responsive and adjustable to various screen resolutions.

Web-based GUI: helper libraries

When developing web-based user interfaces for distributed systems, I recommend the following:

• Bootstrap

https://getbootstrap.com/

• React

https://reactjs.org/

• jQuery

https://jquery.com/

https://getbootstrap.com/
https://reactjs.org/
https://jquery.com/

What should be implemented in a GUI for distributed systems?

1. Job management (manual override)

• Designate a master queue machine (IP address or MAC address)

• Suspend operation of a backup queue machine (IP address or MAC address)

• Resume operation of a backup queue machine (IP address or MAC address)

• Delete pending jobs in master queue (all jobs or specific jobs)

• Delete in-progress jobs in master queue (all jobs or specific jobs)

• Delete error messages (all errors messages or specific error messages)

2. Queue monitor (read-only)

• IP address of master queue

• IP addresses of backup queue machine (identified as backup queues in case master queue fails)

3. Job statistics: worker machines (read-only)

• Number of pending jobs

• Number of in-progress jobs

• Number of completed jobs

• Number of suspended jobs (possibly due to machine failure)

• Average job completion time (all worker machines)

• Average job completion time (particular worker machine)

• Average CPU utilization (all worker machines)

• Average CPU utilization (particular worker machine)

4. Error message statistics: worker machines (read-only)

• Number of error messages reported (all worker machines and queue manager machines)

• Type of error message reported (network failure, drive failure, etc.)

BOINC interface

Image source: https://efmer.com/b/img/boinc/bt/bt_full_max.png

https://efmer.com/b/img/boinc/bt/bt_full_max.png

Deadline interface

Image source: https://docs.thinkboxsoftware.com/products/deadline/10.1/1_User%20Manual/_images/monitor_job_panel.png

https://docs.thinkboxsoftware.com/products/deadline/10.1/1_User%20Manual/_images/monitor_job_panel.png

OpenCue interface

Image source: https://www.opencue.io/docs/user-guides/monitoring-your-jobs/

https://www.opencue.io/docs/user-guides/monitoring-your-jobs/

Prism Pandora interface

Image source: https://prism-pipeline.com/wp-content/uploads/2018/03/RH004c.jpg

https://prism-pipeline.com/wp-content/uploads/2018/03/RH004c.jpg

Grafana interface to monitor Kafka message queue

Image source: https://grafana.com/static/assets/img/blog/kafka_integration_ksqldb.png

For further reading

BOINC

https://boinc.berkeley.edu/

AWS Thinkbox Deadline

https://aws.amazon.com/thinkbox-deadline/

OpenCue

https://www.opencue.io/

Prism

https://prism-pipeline.com/

Grafana

https://grafana.com/solutions/kafka/monitor/

https://boinc.berkeley.edu/
https://aws.amazon.com/thinkbox-deadline/
https://www.opencue.io/
https://prism-pipeline.com/
https://grafana.com/solutions/kafka/monitor/

	Slide 1: User interfaces for distributed systems
	Slide 2: Motivation
	Slide 3: GUI development for distributed systems: practical advice
	Slide 4: GUI development for distributed systems: practical advice
	Slide 5: Web-based GUI: advantages and disadvantages
	Slide 6: Web-based GUI: Beginning development suggestions
	Slide 7: Web-based GUI: helper libraries
	Slide 8: What should be implemented in a GUI for distributed systems?
	Slide 9: BOINC interface
	Slide 10: Deadline interface
	Slide 11: OpenCue interface
	Slide 12: Prism Pandora interface
	Slide 13: Grafana interface to monitor Kafka message queue
	Slide 14: For further reading

