Splines

Bézier curve

- Invented by French engineer, Pierre Bézier (1910-1999).
- Advantages:
 - Draw a smooth curve through a series of linear interpolations.

Bézier curve: Application

- Where could Bézier curves be used?
 - To draw smooth, vector-based typefaces like
 Microsoft TrueType or Adobe Postscript.
 - In computer aided design (CAD)
 - In paint and draw programs

n degree Bézier curve

Bezier
$$(n,t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

Bezier
$$(n, t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

P1: (120, 160); P2: (35, 200); P3: (220, 260); P4: (220, 240); n = 3

$$x = (1-t)^{(3-0)} * t^{0} * 120 + (1-t)^{(3-1)} * t^{1} * 3 * 35 + (1-t)^{(3-2)} * t^{2} * 3 * 220 + (1-t)^{(3-3)} * t^{3} * 220$$

$$y = (1-t)^{(3-0)} * t^{0} * 160 + (1-t)^{(3-1)} * t^{1} * 3 * 200 + (1-t)^{(3-2)} * t^{2} * 3 * 260 + (1-t)^{(3-3)} * t^{3} * 240$$

Bezier
$$(n,t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

 $y = (1 - t)^{(3-0)} * t^{0} * 160 + (1 - t)^{(3-1)} * t^{1} * 3 * 200 + (1 - t)^{(3-2)} * t^{2} * 3 * 260 + (1 - t)^{(3-3)} * t^{3} * 240$

Bezier
$$(n,t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

Bezier
$$(n, t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

P1: (120, 160); P2: (35, 200); P3: (220, 260); P4: (220, 240); n = 3

$$x = (1-t)^3 * 120 + (1-t)^2 * t * 3 * 35 + (1-t) * t^2 * 3 * 220 + 1 * t^3 * 220 y = (1-t)^3 * 160 + (1-t)^2 * t * 3 * 200 + (1-t) * t^2 * 3 * 260 + 1 * t^3 * 240$$

Bezier
$$(n, t) = \sum_{i=0}^{n} {n \choose i} (1-t)^{n-i} t^{i} w^{i}$$

P1: (120, 160); P2: (35, 200); P3: (220, 260); P4: (220, 240); n = 3

$$x = (1-t)^3 * 120 + (1-t)^2 * t * 3 * 35 + (1-t) * t^2 * 3 * 220 + 1 * t^3 * 220 y = (1-t)^3 * 160 + (1-t)^2 * t * 3 * 200 + (1-t) * t^2 * 3 * 260 + 1 * t^3 * 240$$

Solve for values of t between 0 and 1 inclusive.

Continuity

- Two Bézier curves can be joined together.
- Smoothness of curve at juncture point determined by continuity: C⁰, C¹, and C².
- C⁰ continuity:
 - curves are joined together and share a common point.
- C¹ continuity:
 - First derivative at juncture point of both curves is equal.
- C² continuity:
 - First and second derivative at juncture point of both curves is equal.

C⁰ continuity

C¹ continuity

C² continuity

Bézier curve application: typography

Meshes

Meshes

Meshes

Lathe functionality

- A method for rapidly creating complex 3D objects.
 - Start with a 2D curve.
 - Spin the curve around an axis (X, Y, or Z)
 - Instant volume-based 3-dimensional object!

Lathe function

Lathe function

Lathe function

For further reading...

An introduction to splines for use in computer graphics and geometric modeling by Richard H. Bartels, John C. Beatty, and Brian A. Barsky

Curves and surfaces for computer aided geometric design: A practical guide by Gerald Farin

Curves and Surfaces for Computer Graphics by David Salomon

A practical guide to splines by Carl de Boor

The NURBS Book by Les A. Piegl