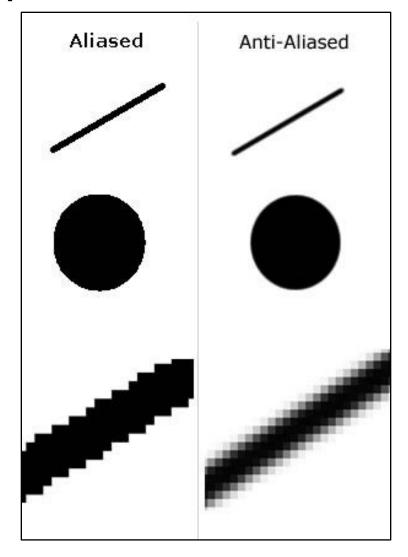
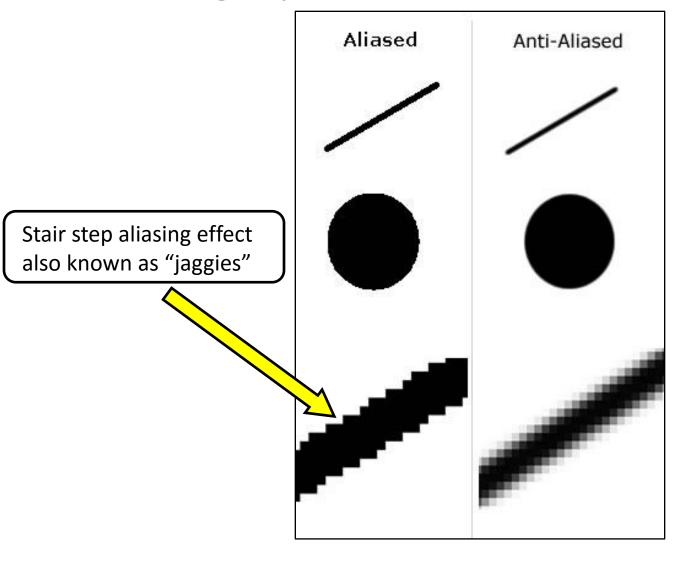
Graphics File Formats


Raster or bitmapped graphics

- Raster or bitmapped graphics
 - Images represented as 2-dimensional array of colored pixels.
 - Images have an implied resolution (resolution dependent).

• Examples:


- GIF (Graphics Interchange Format)
- JPEG (Joint Photographic Experts Group)
- PNG (Portable Network Graphics)
- TIFF (Tagged Image File Format)

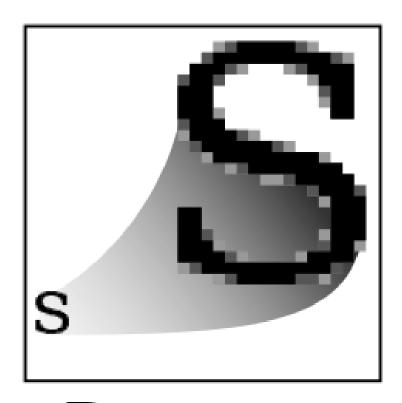
Raster graphics: aliased vs. anti-aliased

Source: https://commons.wikimedia.org/wiki/File:Anti-aliasing.jpg

Raster graphics: aliased vs. anti-aliased

Source: https://commons.wikimedia.org/wiki/File:Anti-aliasing.jpg

Vector graphics


Vector graphics

- images described mathematically as primitives such as points, arcs, and lines.
- Images are resolution independent (scalable)

• Examples:

- Scalable Vector Graphics (SVG). W3 standard for displaying vector graphics on the World Wide Web.
- Flash format by Adobe.

Raster vs. vector graphics

Source: https://en.wikipedia.org/wiki/Scalable Vector Graphics

Raster / bitmap graphics: potentially BIG

- Problem: Raster or bitmapped graphics can result in large file sizes for large resolutions and/or deep color depths.
- Solution: Image compression!

Lossless compression schemes

- Entropy algorithm
 - Huffman compression
- Deflation algorithm
 - Lempel-Ziv-Welch (LZW) compression
- Run Length Encoding (RLE)
- Differential pulse-code modulation (DPCM)
 - Suitable for sequential images such as video.
- Chain code algorithm
 - Suitable for monochrome images.

"Lossy" compression schemes

- Chroma subsampling
 - Human visual perception is more sensitive to variations in brightness than color.
- Reduced color gamut
 - Can be used with dithering algorithm to reduce effect of image banding (posterization).
- Fractal compression
- Transform compression
 - Fast Fourier Transform (FFT)
 - Discrete Cosine Transform (DCT)
 - Wavelet compression

"Lossy" graphics compression

- JPEG File Interchange Format (JFIF)
 - A "lossy" image file format suitable for complex backgrounds such as digital photographs of nature which can achieve high compression while <u>usually</u> retaining visual integrity of the image itself.

Advantages

- Capable of compressing complex images to significantly small file size.
- Images load fast over a network!

Disadvantages

- Permanent loss of image detail.
- Not suitable for logos or anything with strong geometric lines (compression artifacts will occur in such cases).

Run Length Encoding (RLE)

Advantages

- Compressed format saves disk space
- Reduced amount of data to transfer between disk and memory or over network (e.g. web server).

Disadvantages

- Computing overhead to encode/decode the scan lines.
- Worst case scenario: compressed format may result in larger file size than uncompressed format (for short encoding runs).

Run Length Encoding (RLE): Example

Input:

Output:

12W1B12W3B24W1B14W

For further reading

- PNG file format / specification:
 http://www.libpng.org/pub/png/
- PNG: The definitive Guide by Greg Roelofs
- An Introduction to Wavelets by Amara Graps
 http://cs.haifa.ac.il/~nimrod/Compression/Wavelets/Wavelets Graps.pdf
- JPEG-2000 Part-1 Open Source implementation http://www.ece.uvic.ca/~frodo/jasper/