Position-based Fluid Simulations

CS-116B Computer Graphics Algorithms

- "Position Based Dynamics provides a method for simulating dynamics in games based on Verlet integration" (p. 2).
- "Position based dynamics is popular for simulating deformable objects such as cloth. We have prototyped two-way interaction between position based cloth and fluid with promising results" (p. 4).
- The authors implemented their parallel algorithm in CUDA (p. 4).
- Using a GTX-680, they were able to achieve real-time fluid simulations using particles (p. 4).

 Here is a video demonstration of position-based dynamics: <u>https://www.youtube.com/watch?v=F5KuP6qEuew</u>

Particle clumping (undesirable)

Reduced Particle clumping with improved surface tension

Position-based Dynamics: Simulation loop algorithm

Algorithm 1 Simulation Loop
1: for all particles <i>i</i> do
2: apply forces $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t \mathbf{f}_{ext}(\mathbf{x}_i)$
3: predict position $\mathbf{x}_i^* \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$
4: end for
5: for all particles <i>i</i> do
6: find neighboring particles $N_i(\mathbf{x}_i^*)$
7: end for
8: while iter < solverIterations do
9: for all particles <i>i</i> do
10: calculate λ_i
11: end for
12: for all particles <i>i</i> do
13: calculate $\Delta \mathbf{p}_i$
14: perform collision detection and response
15: end for
16: for all particles <i>i</i> do
17: update position $\mathbf{x}_i^* \leftarrow \mathbf{x}_i^* + \Delta \mathbf{p}_i$
18: end for
19: end while
20: for all particles <i>i</i> do
21: update velocity $\mathbf{v}_i \leftarrow \frac{1}{\lambda t} (\mathbf{x}_i^* - \mathbf{x}_i)$
22: apply vorticity confinement and XSPH viscosity
23: update position $\mathbf{x}_i \leftarrow \mathbf{x}_i^*$
24: end for

For Further Reading

Macklin, M. & Muller, M. (n.d.). Position based fluids. Retrieved from: <u>http://mmacklin.com/pbf_sig_preprint.pdf</u>

NVIDIA FleX [computer software]. (n.d.). <u>https://developer.nvidia.com/flex</u>