# Quaternions and Spherical Linear Interpolation (SLERP) for animation

CS-116B Computer Graphics Algorithms

## Quaternions: Advantages

#### 1. Smooth interpolation

"The interpolation provided by SLERP provides smooth interpolation between orientations" (p. 263).

#### 2. Fast concatenation and inversion of angular displacements

"We can concatenate a sequence of angular displacements into a single angular displacement by using the quaternion cross product" (p. 263).

#### 3. Fast conversion to and from matrix form

"...quaternions can be converted to and from matrix form a bit faster than Euler angles" (p. 263).

#### 4. Only four numbers

"Since a quaternion contains four scaler values, it is considerably more economical than a matrix, which uses nine numbers" (p. 263).

### Quaternions: Disadvantages

#### **1.** Slightly bigger than Euler angles

"That one additional number may not seem like much, but an extra 33% can make a difference when large amounts of angular displacement are needed, for example, when storing animation data" (p. 263).

#### 2. Can become invalid

"This can happen either through bad input data, or from accumulated floating point roundoff error" (p. 264).

#### 3. Difficult for humans to work with

"Of the three representation methods, quaternions are the most difficult for humans to work withy directly" (p. 264).

### Interpolating a vector about an arc



Source: Dunn & Parberry, 2011, p. 260.

### Interpolating a vector about an arc



Source: Dunn & Parberry, 2011, p. 260.

### Interpolating a vector about an arc



$$\sin \omega = \frac{\sin t\omega}{k_1}$$
$$k_1 = \frac{\sin t\omega}{\sin \omega}$$

$$k_0 = \frac{\sin(1-t)\omega}{\sin\omega}$$

$$v_{t} = k_0 v_0 + k_1 v_1 = \frac{\sin(1-t)\omega}{\sin\omega} v_0 + \frac{\sin t\omega}{\sin\omega} v_1$$

slerp(q<sub>0</sub>, q<sub>1</sub>, t) = 
$$\frac{\sin(1-t)\omega}{\sin\omega} q_0 + \frac{\sin t\omega}{\sin\omega} q_1$$

Source: Dunn & Parberry, 2011, p. 260.

### Quaternion SLERP

```
// The two input quaternions
float w0, x0, y0, z0;
float w1, x2, y1, z1;
float t; // The interpolation parameter
float w, x, y, z; // The output quaternion will be computed here
float cosOmega = w0*w1 + x0*x1 + y0*y1 + z0*z1; // Compute the "coside of the angle" between the quaternions using the dot product
if (cosOmega < 0.01) // if negative dot, negate one of the input quaternions to take the shorter 4D "arc"
  w1 = -w1;
  x1 = -x1;
  v1 = -v1;
  z1 = -z1;
  cosOmega = -cosOmega;
float k0, k1;
If (cosOmega > 0.9999f) // Check if they are very close together to protect against divide-by-zero
  k0 = 1.0f - t; // very close - just use linear interpolation
  k1 = t;
else
  float sinOmega = sqrt(1.0f - cosOmega * cosOmega)
  float omega = atan2(sinOmega, cosOmega);
  float oneOverSinOmega = 1.0f / sinOmega;
  k0 = sin((1.0f - t * omega) * oneOverSinOmega;
  k1 = sin(t * omega) * oneOverSinOmega;
w = w0 * k0 + w1 * k1;
x = x0 * k0 + x1 * k1;
y = y0 * k0 + y1 * k1;
z = z0 * k0 + z1 * k1;
```

### References

Dunn, F. & Parberry, I. (2011). *3D Math Primer for Graphics and Game Development*. (2<sup>nd</sup> Edition). New York: CRC Press.