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Quaternions: Advantages

1. Smooth interpolation

“The interpolation provided by SLERP provides smooth interpolation between orientations” (p. 263).

2. Fast concatenation and inversion of angular displacements

“We can concatenate a sequence of angular displacements into a single angular displacement by using the quaternion 
cross product” (p. 263).

3. Fast conversion to and from matrix form

“…quaternions can be converted to and from matrix form a bit faster than Euler angles” (p. 263).

4. Only four numbers

“Since a quaternion contains four scaler values, it is considerably more economical than a matrix, which uses nine 
numbers” (p. 263).

Source: Dunn & Parberry, 2011, p. 263.



Quaternions: Disadvantages

1. Slightly bigger than Euler angles

“That one additional number may not seem like much, but an extra 33% can make a difference when large amounts of 
angular displacement are needed, for example, when storing animation data” (p. 263).

2. Can become invalid

“This can happen either through bad input data, or from accumulated floating point roundoff error” (p. 264).

3. Difficult for humans to work with

“Of the three representation methods, quaternions are the most difficult for humans to work withy directly” (p. 264).

Source: Dunn & Parberry, 2011, pp. 263-264.



Interpolating a vector about an arc

Source: Dunn & Parberry, 2011, p. 260.



Interpolating a vector about an arc

Source: Dunn & Parberry, 2011, p. 260.



Interpolating a vector about an arc

Source: Dunn & Parberry, 2011, p. 260.
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Quaternion SLERP
// The two input quaternions

float w0, x0, y0, z0;

float w1, x2, y1, z1;

float t; // The interpolation parameter

float w, x, y, z; // The output quaternion will be computed here

float cosOmega = w0*w1 + x0*x1 + y0*y1 + z0*z1; // Compute the "coside of the angle" between the quaternions using the dot product

if (cosOmega < 0.01) // if negative dot, negate one of the input quaternions to take the shorter 4D "arc"

{

w1 = -w1;

x1 = -x1;

y1 = -y1;

z1 = -z1;

cosOmega = -cosOmega;

}

float k0, k1;

If (cosOmega > 0.9999f) // Check if they are very close together to protect against divide-by-zero

{

k0 = 1.0f – t; // very close – just use linear interpolation

k1 = t;

}

else

{

float sinOmega = sqrt(1.0f – cosOmega * cosOmega)

float omega = atan2(sinOmega, cosOmega);

float oneOverSinOmega = 1.0f / sinOmega;

k0 = sin((1.0f – t * omega) * oneOverSinOmega;

k1 = sin(t * omega) * oneOverSinOmega;

}

w = w0 * k0 + w1 * k1;

x = x0 * k0 + x1 * k1;

y = y0 * k0 + y1 * k1;

z = z0 * k0 + z1 * k1;

Source: Dunn & Parberry, 2011, pp. 262-263.
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