Quaternions and Spherical Linear Interpolation
(SLERP) for animation

CS-116B Computer Graphics Algorithms

Quaternions: Advantages

. Smooth interpolation
“The interpolation provided by SLERP provides smooth interpolation between orientations” (p. 263).

. Fast concatenation and inversion of angular displacements

“We can concatenate a sequence of angular displacements into a single angular displacement by using the quaternion
cross product” (p. 263).

. Fast conversion to and from matrix form

“...quaternions can be converted to and from matrix form a bit faster than Euler angles” (p. 263).

. Only four numbers

“Since a quaternion contains four scaler values, it is considerably more economical than a matrix, which uses nine
numbers” (p. 263).

Source: Dunn & Parberry, 2011, p. 263.

Quaternions: Disadvantages

. Slightly bigger than Euler angles

“That one additional number may not seem like much, but an extra 33% can make a difference when large amounts of
angular displacement are needed, for example, when storing animation data” (p. 263).

. Can become invalid
“This can happen either through bad input data, or from accumulated floating point roundoff error” (p. 264).

. Difficult for humans to work with
“Of the three representation methods, quaternions are the most difficult for humans to work withy directly” (p. 264).

Source: Dunn & Parberry, 2011, pp. 263-264.

Interpolating a vector about an arc

Source: Dunn & Parberry, 2011, p. 260.

Interpolating a vector about an arc

Source: Dunn & Parberry, 2011, p. 260.

Interpolating a vector about an arc

) sin tw
SIn w =
k1
sin tw
ky ==
sin w
sin(1-t)w
ko = - ()
sin w
sin(1-t)w sin tw
Uy = kovg + ki v = Vg +
t 00 1*1 sin w 0 sin w 1
sler (t) __sin(1-tHw + sin tw
P qu qll sin w qO sin w ql

Source: Dunn & Parberry, 2011, p. 260.

Quaternion SLERP

// The two input quaternions

float w0, x0, yO0, zO0;

float wl, x2, vyl, zl;

float t; // The interpolation parameter

float w, x, y, z; // The output quaternion will be computed here

float cosOmega = wO*wl + x0*x1 + yO*yl + z0*z1l; // Compute the "coside of the angle" between the quaternions using the dot product
if (cosOmega < 0.01) // if negative dot, negate one of the input quaternions to take the shorter 4D "arc"

{

wl = -wl;
x1l = -x1;
yl = -y1l;
z1l = -z1;
cosOmega = -cosOmega;

}

float kO, kl1;

If (cosOmega > 0.9999f) // Check if they are very close together to protect against divide-by-zero
{

kO = 1.0f - t; // very close — just use linear interpolation
kl = t;
}
else
{
float sinOmega = sqgrt(l1.0f - cosOmega * cosOmega)
float omega = atan2 (sinOmega, cosOmega) ;
float oneOverSinOmega = 1.0f / sinOmega;
kO = sin((1.0f - t * omega) * oneOverSinOmega;
kl = sin(t * omega) * oneOverSinOmega;
}
w=w0 * kO + wl * k1;
x = x0 * k0O + x1 * kl1;
y = y0 * kO + yl1 * k1;
z = z0 * k0O + z1 * k1;

Source: Dunn & Parberry, 2011, pp. 262-263.

References

Dunn, F. & Parberry, I. (2011). 3D Math Primer for Graphics and Game Development. (2" Edition).
New York: CRC Press.

	Slide 1: Quaternions and Spherical Linear Interpolation (SLERP) for animation
	Slide 2: Quaternions: Advantages
	Slide 3: Quaternions: Disadvantages
	Slide 4: Interpolating a vector about an arc
	Slide 5: Interpolating a vector about an arc
	Slide 6: Interpolating a vector about an arc
	Slide 7: Quaternion SLERP
	Slide 8: References

