Force

CS-116B: Computer Graphics Algorithms Spring 2018

Types of forces

- Gravitational force
- Static and dynamic friction forces
- Fluid dynamics drag force
- Buoyancy force
- Spring and damper forces

Gravitational force

Newton's law of gravitation:

 $F_a = G \times m_1 \times m_2 / r^2$

G is the gravitational constant = 6.673×10^{-11} N-m²/kg² **F**_a is gravitational force of attraction between the two bodies. **m**₁ and **m**₂ are the masses of the two bodies. **r** is the distance between the center of mass of m₁ and m₂.

Static force

Static force:

 $F_s = \mu_s \times N$

 F_s is the static force exerted on a body μ_s is the coefficient of static friction (a constant) N is the normal force between a body and surface.

Dynamic force

Dynamic force:

 $F_d = \mu_d \times N$

 F_d is the dynamic force exerted on a body. μ_d is the coefficient of dynamic friction (a constant) **N** is the normal force between a body and surface.

Buoyancy force

"Buoyancy is a force that develops when an object is immersed in a fluid. It's a function of the volume of the object and density of the fluid and results from the pressure differential between the fluid above the object and the fluid just below the object."

For spheres, cubes, and cylinders calculating volume is easy. For other shapes, you may need to use techniques such as numerical integration.

Spring forces

 $F_s = K_s \times (L - r)$

 \mathbf{F}_{s} is the spring force.

 K_s is a spring constant.

L is the length of a spring in tension or compression.

r is the length of the spring at rest (not in tension or compression).

Damper forces

Dampers act as a drag force.

 $\mathsf{F}_{\mathsf{d}} = \mathsf{K}_{\mathsf{d}} \times (\mathsf{v}_1 - \mathsf{v}_2)$

 F_d is the damping force. K_d is a damping constant. v_1 and v_2 are the respective velocities of two connected objects.

In our simulations you should use dampers in your simulations to absorb energy. The drag induced by the damps will reduce oscillation effects in cloth and rope simulations.