
Connecting Objects

CS-116B: Computer Graphics Algorithms

Spring 2018

Connecting objects

Connecting objects involves rigid body particles to simulate rope or cloth using

the following:

 Hooke’s law, F=kx

 gravity

 rigid body particles (with mass)

 springs (no mass)

Connecting objects

Particles (P) with mass

p0

p1

p2

p5 p4
p3 p6

p7

p8

p9

Source: Physics for Game Developers, p. 261

Connecting objects

Each particle is pinned

to the next particle but

allows rotation. This is

called a “Pinned joint”.

p0

p1

p2

p5 p4
p3 p6

p7

p8

p9

Source: Physics for Game Developers, p. 275

Connecting objects

s0

s1

s2
s5 s4 s3

s6

s7

s8

Weightless, invisible springs (S) connect the particles together.

Source: Physics for Game Developers, p. 261

Particle code for rope simulation: Constants and Array definitions

#define _NUM_OBJECTS 10

#define _NUM_SPRINGS 9

#define _SPRING_K 1000

#define _SPRING_D 100

Particle Objects[_NUM_OBJECTS];

Spring Springs[_NUM_SPRINGS];

Source: Physics for Game Developers, pp. 260

Particle code for rope simulation: structure definition

typedef struct _Spring

{

int End1;

int End2;

float k;

float d;

float InitalLength;

} Spring, *pSpring;

End1:

“A reference to the first particle to which the spring is connected.”

End2:

“A reference to the second particle to which the spring is connected.”

k:

“The spring constant.”

d:

“The damping constant.”

InitialLength:

“The unstretched length of the spring.”

Source: Physics for Game Developers, pp. 260

Particle code for rope simulation: Initialize

bool Initialize (void)

{

Vector r;

int i;

Objects[0].bLocked = true;

// Initialize particle locations from left to right.

for (i=0; i < _NUM_OBJECTS; i++)

{

Objects[i].vPosition.x = _WINWIDTH / 2 + Objects[0].fLength * i;

Objects[i].vPosition.y = _WINHEIGHT / 8;

}

// Initialize springs connecting particles from left to right.

for (i = 0; i <= _NUM_SPRINGS; i++)

{

Spring[i].End1 = i;

Springs[i].End2 = i + 1;

r = OBjects[i+1],vPosition - Objects[i].vPosition;

Springs[i].InitialLength = r.Magnitude();

Springs[i].k = _SPRING_K;

Springs[i].d = _SPRING_D;

}

return true;

}

Source: Physics for Game Developers, pp. 261-262

Particle code: Update Simulation

bool UpdateSimulation (void)

{

double dt = _TIMESTEP;

int i;

double f, dl;

Vector pt1, pt2;

int j;

Vector r;

Vector F;

Vector v1, v2, vr;

// Initialize the spring forces on each object to zero

for (i = 0; i <_NUM_OBJECTS; i++)

{

Objects[i].vSprings.x = 0;

Objects[i].vSprings.y = 0;

Objects[i].vSprings.z = 0;

}

Source: Physics for Game Developers, pp. 261-262

Particle code for rope simulation: Update Simulation (continued)

// Calculate all spring forces based on positions of connected objects.

for (i = 0; i < _NUM_SPRINGS; i++)

{

j = Springs[i].End1;

pt1 = Objects[j].Vposition;

v1 = Objects[j].vVelocity;

j = Springs[i].End2;

pt2 = Objects[j].Vposition;

v2 = Objects[j].vVelocity;

vr = v2 - v1;

r = pt2 - pt1;

dl = r.Magnitude() - Springs[i].InitialLength;

f = Springs[i].k * dl; // - means compression, + means tension

r.Normalize();

F = (r * f) + (Springs[i].d * (vr * r)) * r;

j = Springs[i].End1;

Objects[j].vSprings += F;

j = Springs[i].End2;

Objects[j].vSprings -= F;

}

// [...] Integrate equations of motion as usual

// [...] Render the scene as usual

}

Source: Physics for Game Developers, pp. 261-262

	Slide 1: Connecting Objects
	Slide 2: Connecting objects
	Slide 3: Connecting objects
	Slide 4: Connecting objects
	Slide 5: Connecting objects
	Slide 6: Particle code for rope simulation: Constants and Array definitions
	Slide 7: Particle code for rope simulation: structure definition
	Slide 8: Particle code for rope simulation: Initialize
	Slide 9: Particle code: Update Simulation
	Slide 10: Particle code for rope simulation: Update Simulation (continued)

