### **The Mass Spring Model**

CS-116B: Computer Graphics Algorithms Spring 2018

# Mass spring model: anatomy

Our cloth is comprised of an array of particles interconnected via weightless springs:



## Mass spring model: anatomy

Orange colored arrows represent the structural springs:



## Mass spring model: anatomy

Green colored arrows represent the shear springs:



### Computing surface normals

Why compute surface normals?

- To calculate wind forces pushing against the cloth.
- To calculate gravitational forces pulling the cloth.
- To calculate collision detection with solid objects.

### Computing surface normals

Choose three adjacent particles that form a triangle:



#### Compute surface normals

Compute the normal vector of the triangle defined by the position of the particles  $p_1$ ,  $p_2$ , and  $p_3$ : Vector  $v_1 = (P_2 - P_1)x + (P_2 - P_1)y + (P_2 - P_1)z$ Vector  $v_2 = (P_3 - P_1)x + (P_3 - P_1)y + (P_3 - P_1)z$ cross product of  $v_1$  and  $v_2 = v_1 \times v_2$ Normalized  $v_1 \times v_2 = (v_1 \times v_2) / (magnitude of <math>v_1 \times v_2)$ 



### Computing surface normals

- Wind forces act on planes of the cloth
- A plane is formed from three particles in a triangular pattern.
- The normal of the plane is then used to compute how much wind forces act on the cloth at the particular plane.
- The wind force is a vector. It has values in
  - X direction
  - Y direction
  - Z direction
- Gravity is a force too but it has only has values in Y direction. (Y is down).

#### Compute surface normals

```
vec3 compute_triangle_normal (particle_node *p1,
particle_node *p2, particle_node *p3)
{
    vec3 v1, v2;
    v1.x = p2->pos.x - p1->pos.x;
    v1.y = p2->pos.y - p1->pos.y;
    v1.z = p2->pos.z - p1->pos.z;
    v2.x = p3->pos.x - p1->pos.x;
    v2.y = p3->pos.y - p1->pos.y;
    v2.z = p3->pos.z - p1->pos.z;
    return compute_cross_product (v1, v2);
}
```

# Compute wind force

- The wind force is a force vector.
- To compute how much wind force moves the three particles forming a plane:
  - Compute the dot product between the wind force (a vector) and the normalized cross product of the three particles (a vector).
- Apply the dot product (computed above) as a force to each of the three particles (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>) that make up the plane. This will affect how each of the three particles is then displaced by the wind force.

# Cloth optimization trick

For a stiffer cloth you could increase the "k" value of the spring or add a set of "flexion springs" between (i,j) and (i+2,j) and (i,j+2) and (i,j+2). Where (i,j) represent the row and column of each particle.