
Runge-Kutta Integration

CS-116B: Computer Graphics Algorithms

Spring 2018

Runge-Kutta Integration

Runge-Kutta: a numerical integration scheme.

Fourth degree Runge-Kutta integration:

a1 = vt

b1 = vt + (∆t / 2) * a2

c1 = vt + (∆t / 2) * b2

d1 = vt + ∆t * c2

xt+1 = xt + ∆t / 6 * (a1 + 2b1 + 2c1 + d1)

a2 = f(xt,vt) / m

b2 = f(xt + ∆t / 2 * a1, vt + ∆t / 2 * a2) / m

c2 =f(xt + ∆t / 2 * b1, vt + ∆t / 2 * b2) / m

d2 =f(xt + ∆t * c1, vt + ∆t * c2) / m

vt+1 = vt + ∆t / 6 * (a2 + 2b2 + 2c2 + d2)

Source: Real Time Physics Class Notes, p. 14.

Runge-Kutta Integration: stability

The Runge-Kutta integration scheme is conditionally stable.

Conditionally stable means “there is a certain range for the time step ∆t size for

which the simulation is stable.”

To be conditionally stable, you must adjust the spring k value.

Notes:

“The stiffer the springs, the smaller the time step required to keep the simulation

stable.”

“In real-time situation, e.g. in a computer game, it is essential that an integration is

unconditionally stable meaning stable in all circumstances and for the time step size

given by the required frame rate.”

Source: Real Time Physics Class Notes, p.15.

Runge-Kutta Integration: code

void StepSimulation (float dt)

{

float F; // total force

float A; // acceleration

float Vnew; // new velocity at time t + dt

float Snew; // new position at time t + dt

float k1, k2, k3, k4;

F = (T - (C * V));

A = F / M;

k1 = dt * A;

F = (T - (C * (V + k1 / 2)));

A = F / M;

k2 = dt * A;

F = (T - (C * (V + k2 / 2)));

A = F / M;

k3 = dt * A;

F = (T - (C * (V + k3)));

A = F / M;

k4 = dt * A;

// Calculate the new velocity at time t + dt

// where V is the velocity at time t

Vnew = V + (k1 + 2 * k2 + 2 * k3 + k4) / 6;

// Calculate the new displacement at time t + dt

// where S is the displacement at time t

Snew = S + Vnew * dt;

// Update old velocity and displacement with the new ones

V = Vnew;

S = Snew;

}

Source: Physics for Game Developers, pp.155-156.

Runge-Kutta Integration: code

// Global variables

float T; // thrust

float C; // drag coefficient

float V; // velocity

float M; // mass

float S; // displacement

Source: Physics for Game Developers, pp.149

	Slide 1: Runge-Kutta Integration
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:

