
Verlet Integration

CS-116B: Computer Graphics Algorithms

Spring 2018

Verlet Integration

Verlet integration: a numerical integration scheme based on Euler integration.

Recall in previous discussions of numerical integration:

xnew = xcurrent + vcurrent * Δt

vnew = vcurrent + a * Δt

Verlet integration uses previous displacement and current displacement and a

constant timestep:

xnew = 2xcurrent - xprevious + a * Δt2

xprevious = xcurrent

Source: Advanced Character Physics, p. 3.

Verlet Integration

// Sample code for physics simulation

class ParticleSystem

{

Vector3 m_x[NUM_PARTICLES]; // Current positions

Vector3 m_oldx[NUM_PARTICLES]; // Previous positions

Vector3 m_a[NUM_PARTICLES]; // Force accumulators

Vector3 m_vGravity; // Gravity

float m_fTimeStep;

public:

void TimeStep();

private:

void Verlet();

void SatisfyConstraints();

void AccumulateForces(); // (constructors, initialization etc. omitted)

};

Source: Advanced Character Physics, p. 3.

Verlet Integration

// Verlet integration

step void ParticleSystem::Verlet()

{

for(int i=0; i < NUM_PARTICLES; i++)

{

Vector3 &x = m_x[i];

Vector3 temp = x;

Vector3 &oldx = m_oldx[i];

Vector3 &a = m_a[i];

x += x - oldx + a * fTimeStep * fTimeStep;

oldx = temp;

}

}

// This function should accumulate forces for each particle

void ParticleSystem::AccumulateForces()

{

// All particles are influenced by gravity

for (int i=0; i < NUM_PARTICLES; i++)

m_a[i] = m_vGravity;

}

Source: Advanced Character Physics, p. 4.

Verlet Integration

// Here constraints should be satisfied

void ParticleSystem::SatisfyConstraints()

{

// Ignore this function for now

}

void ParticleSystem::TimeStep()

{

AccumulateForces();

Verlet();

SatisfyConstraints();

}

Source: Advanced Character Physics, p. 4.

Verlet Integration

// Here constraints should be satisfied

void ParticleSystem::SatisfyConstraints()

{

// Ignore this function for now

}

void ParticleSystem::TimeStep()

{

AccumulateForces();

Verlet();

SatisfyConstraints();

}

Source: Advanced Character Physics, p. 4.

Solving concurrency through relaxation

 “Strong springs leads to stiff systems of equations that lead to

instability if only simple integration techniques are used....” (p. 5).

 “Conversely, weak springs lead to elastically looking cloth” (p. 5).

 “...an interesting thing happens if we let the stiffness of the springs

go to infinity: The system suddenly becomes solvable in a stable

way with a very simple and fast approach” (p. 5).

Source: Advanced Character Physics.

Solving concurrency through relaxation

 PROBLEM: “Although the particles might be correctly placed initially, after one

integration step the separation distance between them might have become invalid”

(p. 6). This introduces error that acculumates over time and creates instability.

 SOLUTION: After each iteration, reposition the particles to correct the incorrect

distance (p. 6). This brings stability and accuracy to cloth simulation by ellimating the

cumulative error from each iteration.

 “One may think of this process as inserting infinitely stiff springs between the particle

and the penetration surface - springs that are exactly so strong and suitably damped

that instantly they will attain their rest length zero” (p. 6).

 This technique for solving concurrency through relaxation is called Jacobi or Gauss-

Seidel iteration.

Source: Advanced Character Physics, p. 7.

Distance too large

Source: Advanced Character Physics, p. 6.

Solving concurrency through relaxation: constraint C2

Distance too smallCorrect distance

Jacobi or Gauss-Seidel iteration

// Implements simulation of a stick in a box

void ParticleSystem::SatisfyConstraints()

{

for (int j=0; j < NUM_ITERATIONS; j++)

{

// First satisfy (C1)

for(int i=0; i<NUM_PARTICLES; i++) // For all particles

{

Vector3 &x = m_x[i];

x = vmin(vmax(x, Vector3(0,0,0)), Vector3(1000,1000,1000));

}

// Then satisfy (C2)

Vector3 &x1 = m_x[0];

Vector3 &x2 = m_x[1];

Vector3 delta = x2 - x1;

float deltalength = sqrt(delta*delta);

float diff = (deltalength - restlength)/deltalength;

x1 -= delta * 0.5 * diff;

x2 += delta * 0.5 * diff;

}

}

Source: Advanced Character Physics, p. 7

Pseudo code to satisfy C2

// Pseudo-code for satisfying (C2) using sqrt approximation

delta = x2 - x1;

delta *= restlength * restlength /(delta * delta + restlength * restlength)- 0.5;

x1 -= delta;

x2 += delta;

Source: Advanced Character Physics, p. 7

	Slide 1: Verlet Integration
	Slide 2:
	Slide 3:
	Slide 4:
	Slide 5:
	Slide 6:
	Slide 7:
	Slide 8:
	Slide 9: Solving concurrency through relaxation: constraint C2
	Slide 10:
	Slide 11:

