
Introduction to Godot and the GDScript programming language

CS-330: Introduction to Game Programming

What is Godot?

• Godot is an open-source game engine which supports 2D and 3D game
development on a numerous computing platforms and game consoles.

• Godot’s features include:
✓ 2D and 3D physics engines,
✓ A scripting workspace,
✓ Animation editor,
✓ Tilemap editor,
✓ Shader editor,
✓ Debugger,
✓ Profiler.

• In essence, Godot is an Integrated Development Environment (IDE) for
game development.

• Godot also features extensive online documentation and beginner
tutorials.

What is Godot?

• Godot game engine can be downloaded from
https://godotengine.org/

• Godot game engine documentation can is located at
https://docs.godotengine.org/en/stable/

https://godotengine.org/
https://docs.godotengine.org/en/stable/

Why do I like Godot?

• Godot is cross-platform compatible. The Godot game engine runs on
Windows, Apple (OSX), and GNU/Linux operating systems.

• Godot uses open standards for graphics: Vulkan and OpenGL.

• Godot is distributed as open-source under the MIT License model.

• Game developers may release and profit from their own original
games using the Godot game engine at no cost.

• If you plan to release a game under Unity (a competitor to Godot),
consider the pricing model of Unity:

https://www.polygon.com/23885373/unity-technologies-install-fee-
pricing-change

https://opensource.org/license/MIT
https://www.polygon.com/23885373/unity-technologies-install-fee-pricing-change
https://www.polygon.com/23885373/unity-technologies-install-fee-pricing-change

Why do I like Godot (internal math stuff)

• Godot uses quaternions for 3D transformation matrices.

• This is a very good idea since Euler (pronounced “oiler”) angles are prone
to gimbal lock when computing rotation of a rigid body in three dimensions
(i.e. yaw, pitch, roll).

• Quaternions are impervious to gimble lock since quaternions effectively
utilize a 4-tuple (i.e. W, X, Y, Z) to represent object transformations in
three-dimensional space (i.e. X, Y, Z).

• To learn more about gimbal lock:

https://www.youtube.com/watch?v=z3dDsz4f20A

• Gimbal Lock and NASA’s Apollo 13 (gimbal lock is a real problem):

https://www.youtube.com/watch?v=OmCzZ-D8Wdk

https://www.youtube.com/watch?v=z3dDsz4f20A
https://www.youtube.com/watch?v=OmCzZ-D8Wdk

Programming in Godot

• Godot natively supports a Python-like scripting language called
GDScript.

• Godot also supports C# but you will need to install extra
packages such as the Microsoft .NET System Development Kit
(SDK) to gain this functionality.

• Godot also supports GDExtension which enables one to write
add-on modules for your game in C/C++. This could be useful if
you wish to add features not present in Godot.

Programming in Godot: My recommendations

• Since this this an introductory class, I strongly recommend
programming in GDScript.

• GDScript is easy to learn and adequate for the types of 2D
games I anticipate students will build in this class.

• A GDScript interpreter is built-in to Godot.

Programming in Godot

• Event-driven programming is a programming model in which
code is executed based on external events.

• When you write your game logic in Godot, you will be writing
programming modules to enable functionality for each feature in
your game. For example, when the player hits the spacebar in a
your Godot game, this event may execute a program module
which makes the player’s character jump.

• Programming in Godot is very much event-driven.

What is the effect of event-driven programming on your game?

• Game programming tends to be modular.

• Each module represents some dedicated functionality specific
to the game.

Work-in-progress 2D game in Godot

GDScript for a work-in-progress 2D game

extends CharacterBody2D

const SPEED = 130.0

const JUMP_VELOCITY = -300.0

Get the gravity from the project settings to be synced with RigidBody nodes.

var gravity = ProjectSettings.get_setting("physics/2d/default_gravity")

func _physics_process(delta):

Add the gravity.

if not is_on_floor():

velocity.y += gravity * delta

Handle jump.

if Input.is_action_just_pressed("ui_accept") and is_on_floor():

velocity.y = JUMP_VELOCITY

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay actions.

var direction = Input.get_axis("ui_left", "ui_right")

if direction:

velocity.x = direction * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

move_and_slide()

How do I know what key is mapped to the event “ui_accept”?

extends CharacterBody2D

const SPEED = 130.0

const JUMP_VELOCITY = -300.0

Get the gravity from the project settings to be synced with RigidBody nodes.

var gravity = ProjectSettings.get_setting("physics/2d/default_gravity")

func _physics_process(delta):

Add the gravity.

if not is_on_floor():

velocity.y += gravity * delta

Handle jump.

if Input.is_action_just_pressed("ui_accept") and is_on_floor():

velocity.y = JUMP_VELOCITY

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay actions.

var direction = Input.get_axis("ui_left", "ui_right")

if direction:

velocity.x = direction * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

move_and_slide()

How do I know what key is mapped to the event “ui_accept”?

• How do I know what the key-mapping is when I see the following command (highlighted in yellow)?
if Input.is_action_just_pressed("ui_accept") and is_on_floor():

• The following Godot documentation page provides some insight at:
https://docs.godotengine.org/en/stable/tutorials/inputs/input_examples.html

• Following the link above the Godot documentation mentions input maps where keyboard, mouse, or
other sorts of player inputs are mapped to Godot. To see the keyboard map:

1. Open your Project

2. Select Project Settings

3. Select the Input Map tab

https://docs.godotengine.org/en/stable/tutorials/inputs/input_examples.html

How do I know what key is mapped to the event “ui_accept”?

This screenshot shows that the "space" key is mapped to "ui_accept“. The enter key is also mapped to “ui_accept”.
Therefore the player can press either of these keys to achieve the same functionality.

How do I know what keys “ui_left” and “ui_right” are mapped to?

extends CharacterBody2D

const SPEED = 130.0

const JUMP_VELOCITY = -300.0

Get the gravity from the project settings to be synced with RigidBody nodes.

var gravity = ProjectSettings.get_setting("physics/2d/default_gravity")

func _physics_process(delta):

Add the gravity.

if not is_on_floor():

velocity.y += gravity * delta

Handle jump.

if Input.is_action_just_pressed("ui_accept") and is_on_floor():

velocity.y = JUMP_VELOCITY

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay actions.

var direction = Input.get_axis("ui_left", "ui_right")

if direction:

velocity.x = direction * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

move_and_slide()

How do I know what keys “ui_left” and “ui_right” are mapped to?

According to the same Godot input map (screenshot), references to “ui_left” and “ui_right” are
mapped to the left and right arrow keys on the keyboard respectively. Note: a Joypad Button device (a
sort of handheld multi-button game controller) could also be used (i.e. its buttons are mapped to
“ui_left” and “ui_right” too.

What does “is_on_floor() do?

extends CharacterBody2D

const SPEED = 130.0

const JUMP_VELOCITY = -300.0

Get the gravity from the project settings to be synced with RigidBody nodes.

var gravity = ProjectSettings.get_setting("physics/2d/default_gravity")

func _physics_process(delta):

Add the gravity.

if not is_on_floor():

velocity.y += gravity * delta

Handle jump.

if Input.is_action_just_pressed("ui_accept") and is_on_floor():

velocity.y = JUMP_VELOCITY

Get the input direction and handle the movement/deceleration.

As good practice, you should replace UI actions with custom gameplay actions.

var direction = Input.get_axis("ui_left", "ui_right")

if direction:

velocity.x = direction * SPEED

else:

velocity.x = move_toward(velocity.x, 0, SPEED)

move_and_slide()

What does Godot “is_on_floor()” function do?

According to Godot document below:

https://docs.godotengine.org/en/stable/classes/class_characterbody2d.html#class-characterbody2d-
method-is-on-floor

The is_on_floor() function “Returns true if the body collided only with the floor on the last call of
move_and_slide. Otherwise, returns false. The up_direction and floor_max_angle are used to
determine whether a surface is ‘floor’ or not.”

Why did I call the is_on_floor() function in my game when the player’s character is jumping? Without
that function, my game would allow a player to jump while in mid-air! I will provide a demonstration
with the is_on_floor() function call removed from my work-in-progress game to show you how it
impacts the game play.

https://docs.godotengine.org/en/stable/classes/class_characterbody2d.html#class-characterbody2d-method-is-on-floor
https://docs.godotengine.org/en/stable/classes/class_characterbody2d.html#class-characterbody2d-method-is-on-floor

Live demo of a work-in-progress 2D game.

Advice on developing your first game

The difficulties you will experience in making your first Godot game:

• Navigating the user-interface in Godot (yes, it is complicated).

• Learning the Godot application programmer’s interface (API) to achieve the sorts of
actions you want the game to achieve.

To alleviate the steep learning curve, I suggest:

• Don’t speed-run Godot’s Dodge the Creeps tutorial. There are many details to follow and
understand. Your attention to details matters!

• There are numerous informative Youtube videos on game development in Godot. Watch
them. You can pause the video as you watch.

• Everyone learns at a different pace.

• Ask me questions during office hours. I’m here to help!

Excellent Godot tutorial

How to make a Video Game - Godot Beginner Tutorial

https://www.youtube.com/watch?v=LOhfqjmasi0

https://www.youtube.com/watch?v=LOhfqjmasi0

Art assets for game development

Godot Asset Library

https://godotengine.org/asset-library/asset

https://godotengine.org/asset-library/asset

	Slide 1: Introduction to Godot and the GDScript programming language
	Slide 2: What is Godot?
	Slide 3: What is Godot?
	Slide 4: Why do I like Godot?
	Slide 5: Why do I like Godot (internal math stuff)
	Slide 6: Programming in Godot
	Slide 7: Programming in Godot: My recommendations
	Slide 8: Programming in Godot
	Slide 9: What is the effect of event-driven programming on your game?
	Slide 10: Work-in-progress 2D game in Godot
	Slide 11: GDScript for a work-in-progress 2D game
	Slide 12: How do I know what key is mapped to the event “ui_accept”?
	Slide 13: How do I know what key is mapped to the event “ui_accept”?
	Slide 14: How do I know what key is mapped to the event “ui_accept”?
	Slide 15: How do I know what keys “ui_left” and “ui_right” are mapped to?
	Slide 16: How do I know what keys “ui_left” and “ui_right” are mapped to?
	Slide 17: What does “is_on_floor() do?
	Slide 18: What does Godot “is_on_floor()” function do?
	Slide 19: Live demo of a work-in-progress 2D game.
	Slide 20: Advice on developing your first game
	Slide 21: Excellent Godot tutorial
	Slide 22: Art assets for game development

