

What is Programming Languages all

* Defining and utilizing programming language grammar.

* Parsing through tokenization and later, recursive descent to form
syntax trees.

« Lexical analysis for semantics (context) and syntax (conformity to
grammatical rules).

On a more subtle level we will examine:

 Differences in programming language design and features.

How will we implement this?

You will write programs in C or C++ which implement:

1. Procedural-based Deterministic Finite State Machines.

2. Binary trees using Left-child, Right-sibling to store parse trees.

3. Linear linked lists to store symbol tables

The culminating final project in this class is developing an interpreter in a
C-like programming language.

Is this really difficult?

* Yes, it can be difficult.

* | designed the in-class exercises to prepare you for success and
overcome the difficulties. Hint: a solid foundation built on tokenization

will make lexical analysis and subsequent steps much easier when
writing an interpreter.

* Remember: you are not alone! You will be working on a team.
Furthermore, | will be your coach and mentor.

Emphasis on short lectures

* Lectures will generally be short (approximately 30 minutes).

» Class-time primarily focused on in-class exercises in teams.

* I've designed the in-class exercises to help you understand and
achieve course goals and objectives.

Success in CS-460: Programming La

Attend classes and contribute to the in-class exercises.

Manage your time well. Pace yourself!

Utilize my weekly student hours (traditionally called “office hours”).

Communicate! Communicate! Communicate!

Communicate! Communicate! Com

* When issues arrive on a team and cannot be resolved, please let me
know as-soon-as-possible.

* | have diplomatic ways to find common ground and get the team to
work well together.

* | want your team to succeed!

* | have student hours (traditionally called “office hours”) to serve you!
Student hours are a GREAT time talk. | really enjoy hearing form
students.

Advice from former CS-460 student

* "To know the road ahead, ask those coming back." - Chinese proverb

Challenges

Easiest Hardest

il Descent Parser

Symbol Table

Comments Interpreter

Tokenization

Advice for New Teams

Start early
Ask questions
Don't take CS 470 at the same

time

Have more structure for tasks and
deadlines within our team

Split up the work where possible

Difficulties

e Time crunches

o Didn't always leave enough time for bug fixing

o Often leading to redundant and messy code

m Leading to more time to fix

. Leading to messier code

< Making it take longer 1o fix

Leading to messier code
- Leading to it taking knger

e Sharing the project over Github

o Handful of nightmares with overwrites
o Hard to work at the same time

X

Realizing the Importance of Time Management

e Starting projects early
o Plan early on
o Break apart tasks
o Make a schedule to meet
e Less stress for everyone
o More sleep
o More time for other projects
e More time to debug and write better code
o Rushing to finish

Easiest/Hardest parts of the project

e Easier
o Ignoring comments
o Tokenization

e Harder

o Abstract syntax tree
o Putting all the pieces together for the
interpreter

Different Approaches We Would Have Now:

e Starting a Trello board to assign tasks
e Starting the projects earlier

e Having more full-team meetings to work through issues

e Better communication m Tre llo

Advice To A New Team

e Start the projects early

e Communicate with one another

e Don't be afraid to ask for help!

e Utilize your team members strengths

Recommendations

Set up and work from a repository from the beginning
Keep it simple
Establish clear cut team member roles early on

Avoid the sunken cost fallacy
o Sam's symbol table entry classes to a struct
o 3 -5files completely retrofitted

Make sure everyone is on the same page
Brainstorm together with the rest of the group
"“Communicate, communicate, communicate” - Robert Bruce

Challenges

Using Replit - coding repository for teams
- Delegating tasks to team members

- COMMUNICATION

- Organization

- Bringing it all together

- Balancing all other classwork

Improvements on Development

Manage time more efficiently
Have clear tasks assigned

Use trello or a task manager

What were the easiest and most difficult aspects to writing
an interpreter?

Easiest: Difficult:
e Removing comments e Concrete syntax tree
e Building off of the DFA e Making our execute main

with other functions function

If you started this project all over again, how would your
approach differ or would it remain the same? Explain.

Start planning things sooner

Make more functions when the same thing is written multiple times

Spend time to refactor the code

Document the code so the next person can easily understand it and to make it
easier to understand what old code does

e Before starting the next assignment, we should ensure that the functionality of
our previous assignment works with the new inputs.

What experience and advice would you share to a new

team about to embark on writing an interpreter for
CS-4607?

Take into account what the interpreter should or shouldn't allow (ex. Variables with
numbers in the name)

Take into account edge cases that aren’t in the graded test cases.

Understand the DFA you need to make before doing anything else, as that will form
the basis for the whole project

Plan out what you are going to code before you start coding

Our advice for future CS 460 students:

ORGANIZATION!!!

Difficult vs. Easy Aspects

- It's easier to account for what the computer should
do if the given code is 100% correct

BUT there's so many different ways for the code to
be incorrect

Our takeaways from this class

Understanding
Interpreters

Importance of |

code organization

~ Coding
collaboratively

Teamwork

The following is an exact quote from the speaker notes of one CS-460 team:

Advice for future CS460 students

This is why our BIGGEST advice to future CS 460 students would be to make sure you organize your
code from the start. And I think that if we were starting this project from the beginning again we might
benefit from spending a little time learning a collaborative coding tool like github. While our way of
doing it on our own computers worked well enough for us it would probably save us from a lot of
zipping, uploading, and re-downloading files and not procrastinating, but we’ll work on learning how to

do that later (hahaha get it??)

Interpreter: Difficult and Easy

It was generally easy getting started on each segment of the Interpreter as we had a good foundation of
what we wanted to accomplish and how it was going to be done, however working on and fine tuning
the details of each section was difficult and thus took the longest amount of time.

Establishing proper version control also initially proved difficult however we setup a Github repository
and worked off of that, and also maintained communication about what we were specifically working

on in our Discord server, which helped significantly.

If We Restarted (git reset --hard)

Some rounds of testing required additional modifications to previous aspects of the interpreter.

Thus always looking ahead and keeping the bigger picture in mind more often would have helped
during implementation.

Group communication method and code sharing setup, using a Discord server and Github, would
be kept the same as it worked out well to stay updated on the current iteration of the code.

Directly pre planning scheduling for each segment could have helped limit any time crunching
leading up to due dates.

Project Significance in Industry

e Working on an interpreter in a group project showcases your collaboration
and communication skills, essential for software engineering roles that
often involve teamwork and coordination with other developers.

Discussing your experience with coding an interpreter in a group project
allows you to showcase your learning process, adaptability to new

technologies, and the ability to quickly grasp and contribute to unfamiliar
codebases.

Demonstrating we can encounter challenges and find innovative solutions
while working on the project.

I’m here to help you and guide you.
We work as a team.
Your commitment to this class is paramount to your success.

Make me proud of your work!

29

Thank You

	Slide 1: Success in CS-460: Programming Languages
	Slide 2: What is Programming Languages all about?
	Slide 3: How will we implement this?
	Slide 4: Is this really difficult?
	Slide 5: Emphasis on short lectures
	Slide 6: Success in CS-460: Programming Languages
	Slide 7: Communicate! Communicate! Communicate!
	Slide 8: Advice from former CS-460 students
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Summary
	Slide 30: Thank You

