
Introduction to exercise 3a: Concrete Syntax Tree (CST)

CS-460: Programming Language

Robert Bruce



What is a Concrete Syntax Tree (CST)?

• A Concrete Syntax Tree (CST) is a visual representation of the entire tokenized input 
program stored in a tree data structure.

• For this class, we will use an LCRS (left-child right-sibling) binary tree to store our tokens.



Example program

procedure main (void)

{

int sum;

sum = 1 + 2 * 3;

}



Example program

Break the program into a series of lines:

1. procedure main (void)

2. {

3. int sum;

4.

5. sum = 1 + 2 * 3;

6. }



Line one from input program

procedure main (void)



Line two from input program

{



Line three from input program

int sum;



Line four from input program

• Line four is a blank line. 

• There is nothing to tokenize and nothing to store in the tree. 

• Proceed to the line five.



Line five from input program

sum = 1 + 2 * 3;



Line six from input program

}



Example program inserted into an LCRS binary tree 

procedure main (void)

{

int sum;

sum = 1 + 2 * 3;

}



Reflection

The impact of creating a Concrete Syntax Tree (CST):

• If you can successfully create a CST, it signifies your input program (i.e. the program that 
is parsed) is syntactically correct; however, the input program could still have errors. For 
example, an input program could refer to a variable that was never declared. 

Next step:

• A CST is the first line of defense in looking for syntax errors. The next step is creating a 
symbol table of all procedures, functions, and variables. A symbol table (future in-class 
assignment) will be able to determine which variables are referenced (perhaps in an 
expression) yet never declared. 

Final thought:

• The symbol table will also be useful when we create Abstract Syntax Tree (AST). This will 
also be a future in-class assignment.


	Slide 1: Introduction to exercise 3a: Concrete Syntax Tree (CST)
	Slide 2: What is a Concrete Syntax Tree (CST)?
	Slide 3: Example program
	Slide 4: Example program
	Slide 5: Line one from input program
	Slide 6: Line two from input program
	Slide 7: Line three from input program
	Slide 8: Line four from input program
	Slide 9: Line five from input program
	Slide 10: Line six from input program
	Slide 11: Example program inserted into an LCRS binary tree 
	Slide 12: Reflection

