
Introduction to exercise 5a

CS-460: Programming Languages

Robert Bruce

What is the Shunting Yard algorithm?

The Shunting Yard algorithm converts mathematical* expressions in infix notation into either
prefix or postfix notation while preserving operator precedence.

E. W. Dijkstra invented and published the Shunting Yard Algorithm in 1963 (reference is
included at the end of this presentation).

*Note: we can adapt the Shunting Yard algorithm to convert Boolean expressions from infix
notation to postfix notation too!

Why is the Shunting Yard algorithm useful?

• Computing an expression in infix notation can be difficult while observing operator
precedence.

• Converting the expression into postfix notation while observing operator precedence
makes evaluating the expression much easier.

• The conversion process from infix to postfix will require a temporary working stack.

• The evaluation of the postfix expression will also require a temporary working stack.

• The stack is a Last-In-First-Out (LIFO) data structure.

The Shunting Yard algorithm

• In the Files folder under Canvas, I've written the Shunting Yard algorithm in a C-like
programing language.

• The file is titled, "numerical_expression_postfix_algorithm.txt".

Converting from infix to postfix using the Shunting Yard algorithm

Example of an expression in infix notation:

1 - 2 * 3 + 4 * 5 / 5

Converting the following expression from infix to postfix using the Shunting Yard algorithm:
1 - 2 * 3 + 4 * 5 / 5

STEP INPUT TOKEN OUTPUT STACK

1 1

2 1

3 - 1

4 1 -

5 2 1 -

6 1 2 -

7 * 1 2 -

8 1 2 - *

9 3 1 2 - *

10 1 2 3 - *

11 + 1 2 3 * -

12 1 2 3 * - +

13 4 1 2 3 * - 4 +

14 1 2 3 * - 4 +

15 * 1 2 3 * - 4 +

16 1 2 3 * - 4 + *

17 5 1 2 3 * - 4 + *

18 1 2 3 * - 4 5 + *

19 / 1 2 3 * - 4 5 + *

20 1 2 3 * - 4 5 * + /

21 5 1 2 3 * - 4 5 * 5 + /

22 1 2 3 * - 4 5 * 5 /

23 1 2 3 * - 4 5 * 5 / +

Converting from infix to postfix using the Shunting Yard algorithm

Example of an expression in infix notation:

1 - 2 * 3 + 4 * 5 / 5

Same expression in postfix notation:

1 2 3 * - 4 5 * 5 / +

Computing a postfix expression using a stack

Example: computing an expression in infix notation while observing operator precedence:

1 - 2 * 3 + 4 * 5 / 5

= 1-(2*3)+((4*5)/5)

= 1-6+(20/5)

= 1-6+4

= -5+4

= -1

Computing a postfix expression using a stack

Example: computing in postfix notation :

1 2 3 * - 4 5 * 5 / +

Computing the following postfix expression using a stack: 1 2 3 * - 4 5 * 5 / +

STEP INPUT TOKEN STACK NOTES

1 1 1 Push (1)

2 2 1 2 Push (2)

3 3 1 2 3 Push (3)

4 * 1 2 3 * Push (*)

5 1 2 3 Pop (*)

6 1 2 Pop (3)

7 1 Pop (2)

8 1 Compute: 2*3 = 6

9 1 6 Push (6)

10 - 1 6 - Push (-)

11 1 6 Pop (-)

12 1 Pop (6)

13 1 Pop (1)

14 Compute: 1-6 = -5

15 -5 Push (-5)

16 4 -5 4 Push (4)

17 5 -5 4 5 Push (5)

18 * -5 4 5 * Push (*)

19 -5 4 5 Pop (*)

20 -5 4 Pop (5)

21 -5 Pop (4)

22 -5 Compute: 4*5 = 20

23 -5 20 Push (20)

24 5 -5 20 5 Push (5)

25 / -5 20 5 / Push (/)

26 -5 20 5 Pop (/)

27 -5 20 Pop (5)

28 -5 Pop (20)

29 -5 Compute: 20/5 = 4

30 -5 4 Push (4)

31 + -5 4 + Push (+)

32 -5 4 Pop (+)

33 -5 Pop (4)

34 Pop (-5)

35 Compute: -5+4 = -1

36 -1 Push (-1)

37 Pop (-1)

38 Computation complete: The answer is -1.

Shunting Yard algorithm for Boolean expressions?

• On Thursday, I will discuss how to convert Boolean expressions from infix notation into
postfix.

• You will need to evaluate numerical expressions in your interpreter (i.e. assignment
statements)

• You will also need to evaluate Boolean expressions in your interpreter (i.e the Boolean
expressions inside an if statement, for statement, while statement, etc.)

• Boolean expressions also exhibit operator precedence.

• Stay tuned...

Reference

E. W. Dijkstra, "Making a Translator for ALGOL-60," Annual Review in Automatic
Programming, vol. 3, pp. 347-356, 1963, doi:10.1016/S0066-4138(63)80016-6

	Slide 1: Introduction to exercise 5a
	Slide 2: What is the Shunting Yard algorithm?
	Slide 3: Why is the Shunting Yard algorithm useful?
	Slide 4: The Shunting Yard algorithm
	Slide 5: Converting from infix to postfix using the Shunting Yard algorithm
	Slide 6: Converting the following expression from infix to postfix using the Shunting Yard algorithm: 1 - 2 * 3 + 4 * 5 / 5
	Slide 7: Converting from infix to postfix using the Shunting Yard algorithm
	Slide 8: Computing a postfix expression using a stack
	Slide 9: Computing a postfix expression using a stack
	Slide 10: Computing the following postfix expression using a stack: 1 2 3 * - 4 5 * 5 / +
	Slide 11: Shunting Yard algorithm for Boolean expressions?
	Slide 12: Reference

