Introduction to exercise 5b
CS-460: Programming Languages
Robert Bruce

Return of the Shunting Yard algorithm: Evaluating Boolean expressions

* Previously, we discussed using Dijkstra's Shunting Yard algorithm to convert numerical
mathematical expressions from infix notation into postfix notation while preserving
operator precedence.

* In this lecture, we'll convert Boolean expressions from infix notation to postfix notation
using Dijkstra's Shunting Yard algorithm.

» Operator precedence will apply.

What is a Boolean expression?

« A Boolean expression is any expression that evaluates to either TRUE or FALSE.

Boolean expressions can be comprised of numerical expressions (as long as those
expressions have some sort of comparator operator to evaluate to TRUE or FALSE).

Boolean expressions can be mixture of numerical expressions and Boolean logic too!

What is a Boolean expression?
(continued)

» A Boolean expression can contain a mixture operand datatypes (e.g. bool, char, int) as
long as the overall expression evaluates to a TRUE or FALSE.

« Examples:
(byte index < 255) && (byte != '\0'")
((i >= 0) && (i <= 99))
((valid input == TRUE) && (number input bytes < MAX BUFFER SIZE))
((byte >= 'A') && (byte <= '2') || (byte >= 'a') && (byte <= 'z'))

What makes Boolean expressions difficult to evaluate?

In addition to observing Boolean operator precedence, we must also observe
mathematical operator precedence!

Example:
((foo - bar * 2) > 128)

We must first evaluate foo - bar * 2 before determining if that resultant is greater
than 128 because parenthesis have higher precedence than the greater-than sign. Within
the numerical expression, foo - bar * 2, we must observe operator precedence:

multiplication has higher precedence than subtraction.

In the files folder under Canvas, I've written an implementation of the Shunting Yard
algorithm specifically for Boolean expressions in a C-like programing language.

The file is titled, "boolean_expression_postfix_algorithm.txt".

Why convert and evaluate Boolean expressions in postfix?

« Evaluating a Boolean expression in infix notation can be difficult while observing operator
precedence.

« Converting the expression into postfix notation while observing operator precedence
makes evaluating the Boolean expression much easier.

* The conversion process from infix to postfix will require a temporary working stack.
» The evaluation of the postfix expression will also require a temporary working stack.
» The stack is a Last-In-First-Out (LIFO) data structure.

Why convert and evaluate Boolean expressions in postfix?

 Ultimately, you will be evaluating Boolean expressions on-the-fly when running programs
in your interpreter:
v You will need to determine if the Boolean result of some complex expression is either TRUE or FALSE.
v’ IF statements, WHILE statements, and FOR statements all contain Boolean expressions. Examples:
if (hex_digit >= '0') && (hex_digit <= '9') || (hex_digit >= 'A") && (hex_digit <= 'F’) || (hex_digit >= ‘a’) && (hex_digit <= f))
while ((num_digits > 0) && (num_digits <= 2))
for (counter = 0; counter < 100; counter = counter + 1)

v" An assignment statement could also contain a Boolean expression. Example:

foo = (num_digits > 0) && (current_byte I= 0’)

Converting from infix to postfix using the Shunting Yard algorithm

Example of a Boolean expression in infix notation:
(byte >= '0') && (byte <= '9")

Converting the following Boolean expression from infix to postfix using the Shunting Yard algorithm:
(byte >= '0') && (byte <= '9')

I — (

—a— (
5| oye <
I (>-
byte byte ‘0’ >= && (
“ byte ‘0’ >= byte && (
“ <= byte ‘0’ >= byte && (
“ byte ‘0’ >= byte && (<=
“ byte ‘0’ >= byte 8& (<=
“ byte ‘0’ >= byte &8 (<=
23 9 byte ‘0’ >= byte * 8& (<=
24 byte ‘0’ >= byte ‘9 && (<=
25 byte ‘0’ >= byte ‘9 && (<=
I byte ‘0’ >= byte ‘9’ && (<=
) byte ‘0’ >= byte ‘9’ && (<=
2| byte ‘0’ >= byte ‘9’ <= 88
2| byte ‘0’ >= byte ‘9’ <= 8&

Converting from infix to postfix using the Shunting Yard algorithm

Example of a Boolean expression in infix notation:
(byte >= '0') && (byte <= '9")

Same Boolean expression in postfix notation:
byte ‘0’ >= byte ‘9’ <= &&

Evaluating a Boolean expression in infix notation

Example: evaluating a Boolean expression in infix notation while observing operator
precedence. Note: for this example, byte equals A’.

EVALUATE: (byte >= '0') && (byte <= '9')
EVALUATE: ('A' >= '0') && ('A' <= '9')
EVALUATE: (TRUE) && (FALSE)
EVALUATE : TRUE && FALSE
EVALUATE: FALSE

When byte equals 'A’, the Boolean expression above evaluates to FALSE.

Evaluating a postfix Boolean expression using a stack

Example: evaluating in postfix notation for a Boolean expression. Note: for this example,
byte equals 'A’.

byte ‘0’ >= byte ‘9’ <= &&

STEP

-_—

N

Evaluating the following postfix Boolean expression using a stack:

byte ‘0’ >= byte ‘9’ <= &&
byte
byte Push (byte)
‘0 byte
byte ‘0’ Push (‘0")
>= byte ‘0’
byte ‘0’ >= Push (>=)
Pop (>=)
Pop ('0°)
Pop (byte)
Evaluate: byte >=‘0’. Since byte is ‘A, evaluation results in TRUE.
TRUE Push (TRUE)
byte TRUE
TRUE byte Push (byte)
‘9 TRUE byte
TRUE byte ‘9’ Push (‘9")
<= TRUE byte ‘9’
TRUE byte ‘9’ <= Push (<=)
TRUE byte ‘9’ Pop (<=)
TRUE byte Pop (9)
TRUE Pop (byte)
TRUE Evaluate: byte <=‘9’. Since byte is ‘A, evaluation results in FALSE.
TRUE FALSE Push (FALSE)
&& TRUE FALSE
TRUE FALSE && Push (&&)
TRUE FALSE Pop (&&)
TRUE Pop (FALSE)
Pop (TRUE)
Evaluate: TRUE && FALSE. Evaluation results is FALSE.
FALSE Push (FALSE)

Pop (FALSE)

Evaluation complete: Boolean expression is FALSE.

	Slide 1: Introduction to exercise 5b
	Slide 2: Return of the Shunting Yard algorithm: Evaluating Boolean expressions
	Slide 3: What is a Boolean expression?
	Slide 4: What is a Boolean expression? (continued)
	Slide 5: What makes Boolean expressions difficult to evaluate?
	Slide 6: Why convert and evaluate Boolean expressions in postfix?
	Slide 7: Why convert and evaluate Boolean expressions in postfix?
	Slide 8: Converting from infix to postfix using the Shunting Yard algorithm
	Slide 9: Converting the following Boolean expression from infix to postfix using the Shunting Yard algorithm: (byte >= '0') && (byte <= '9')
	Slide 10: Converting from infix to postfix using the Shunting Yard algorithm
	Slide 11: Evaluating a Boolean expression in infix notation
	Slide 12: Evaluating a postfix Boolean expression using a stack
	Slide 13: Evaluating the following postfix Boolean expression using a stack: byte ‘0’ >= byte ‘9’ <= &&

