Introduction to exercise 6a: Abstract Syntax Tree (AST)
CS-460: Programming Language
Robert Bruce

What is an Abstract Syntax Tree (AST)?

An Abstract Syntax Tree (AST) is an abridged version of a Concrete Syntax Tree (CST).

An AST uses the same LCRS (left-child right-sibling) binary tree data structure to store
tokens as a CST.

When applicable, the AST may also point into the symbol table (e.g. for function,
procedure, and variable declarations or assignment statements). Note: the pointer I'm

referring to does not impact left-child or right-sibling pointers. It would be a miscellaneous
extra attribute.

Recall that a CST contains every token present in the input program parsed.

Consequently, a CST is syntactically verbose. In contrast to a CST, an AST removes
unnecessary tokens from a CST.

Important note about Abstract Syntax Tree construction

Note: The procedure for constructing an Abstract Syntax Tree (AST) can differ widely in
real-world implementation.

* | view the AST as a Concrete Syntax Tree that has been prepared for program
interpretation and execution.

My ASTs contain all Boolean and numerical expressions (from assignment statements) in
postfix notation. This makes it easy to compute the result of the expression on-the-fly
during run-time of an interpreted program.

» The data structure for each element of my AST contains an extra field: a pointer into the
symbol table. For example, a variable listed in my AST would point to the appropriate
entry in the symbol table for that variable. This makes it very easy to know which variable
to update and/or retrieve a value from during run-time of an interpreted program.

Simple program integrating AST with Symbol Table

procedure main (void)

{

int sum;

sum = 1 + 2 * 3;
}

Simple program

DECLARATION

next child

BEGIN BLOCK

next child

identifier_name: main

identifier_type: procedure

parameter_list | NULL I

datatype: UNDEFINED

datatype_is_array: FALSE

datatype_array_size: 0

datatype_value | NULL. I

scope: 1

next_symbol_table_element

DECLARATION

next sibling

ASSIGNMENT

next child

h 4
END BLOCK

next child

Y

NULL

identifier_name: sum

identifier_type: datatype

parameter_list NULL

datatype: int

datatype_is_array: FALSE

datatype_array_size: 0

datatype_value NULL

scope: 1

next_symbol_table_element

integrating AST with Symbol Table

Notes:

The blue boxes represent elements from the symbol table.
The green boxes represent an abstract syntax tree.

Notice that expressions are converted to postfix order for operator precedence.

Lines colored in blue represent access to the symbol table.

next sibling

next sibling

) next sibling 3 next sibling

nextsibling

next sibling

next sibling

NULL

Reflection: Simple program integrating AST with Symbol Table

Note: in the previous example, you may believe | was inefficient in storing the variable "sum" - | concur my method is inefficient - as an extra element of
the Abstract Syntax Tree since the ASSIGNMENT element could point to "sum" in the Symbol table:

sum = 1 + 2 * 3;

identifier_name: main

identifier_type: procedure

parameter_list

datatype: UNDEFINED

datatype_is_array: FALSE

datatype_array_size: 0

datatype_value

scope: 1

next_symbol_table_element

identifier_name: sum

identifier _type: datatype

parameter_list

datatype: int

datatype_is_array: FALSE

scope: 1

next_symbol_table_element

DECLARATION

BEGIN BLOCK

DECLARATION
next i

} ASSIGNMENT |

END BLOCK
next el

Reflection: Simple program integrating AST with Symbol Table

Now consider another scenario:
procedure main (void)
{
int sum[10];
sum([5] =1 + 2 * 3;
}

Identifier_type: procedure

datatype: UNDEFINED

dentifier_name: sum
identifir_type: datatype
parameter_list
datatype: in
datatype_is_array: TRUS
datatype_array_size: 10
datatype_val
scope: 1
x1_symbol_table_elem:

Example program

function int sum of first n squares (int n)

{

procedure main

{

int sum;
sum = 0;
if (n >= 1)

{

sum =

}

return sum;

int n;
int sum;
n = 100;

sum = sum of first n squares

(2 *n + 1) / 6;

(n);

printf ("sum of the squares of the first %d numbers = %d\n", n, sum);

Example program

Break the program into a series of lines:

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

1
2
3
4.
5.
6
7
8

function int sum of first n squares (int n)

{

int sum;
sum = 0;
if (n >= 1)
{
sum = n * (n+ 1) * (2 *n+ 1) / 6;
}

return sum;

procedure main (void)

{

int n;

int sum;

n = 100;

sum = sum of first n squares (n);

printf ("sum of the squares of the first %d numbers

$d\n",

n,

sum) ;

Concrete Syntax Tree versus Abstract Syntax Tree: Line 1

Line 1:
function int sum of first n squares (int n)

Concrete Syntax Tree for line 1:

l

I—>| int I—>| sum_of_first_n_squares I—)I (l—bl int l—bl n I»—)I) |—>|

Abstract Syntax Tree for line 1:

DECLARATION —> NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 2

Line 2:
{

Concrete Syntax Tree for line 2:
l { |—>| NULL |

Abstract Syntax Tree for line 2:
l BBBBBBBBBB |—>| NULL. |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 3

Line 3:

int sum;

Concrete Syntax Tree for line 3:

Abstract Syntax Tree for line 3:
l DECLARATION I—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 4

Line 4:

sum = 0;

Concrete Syntax Tree for line 4:

l — - — F— F—f
Abstract Syntax Tree for line 4:
[assiowment) s] s »

Concrete Syntax Tree versus Abstract Syntax Tree: Line 5

Line 5:
if (n >= 1)

Concrete Syntax Tree for line 5:

l H — (— : — — — [
Abstract Syntax Tree for line 5:
l E F—1 z —{ ——f

Concrete Syntax Tree versus Abstract Syntax Tree: Line 6

Line 6:
{

Concrete Syntax Tree for line 6:
l (—1 |

Abstract Syntax Tree for line 6:
l EEEEEEEEEE }—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 7

Line 7:
sum = n * (n + 1) * (2 *n + 1) / 6;

Concrete Syntax Tree for line 7:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 8

Line 8:
}

Concrete Syntax Tree for line 8:
l) |—>| NULL |

Abstract Syntax Tree for line 8:
l END BLOCK |—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 9

Line 9:

return sum;

Concrete Syntax Tree for line 9:
l ——1 o —1 : F—1

Abstract Syntax Tree for line 9:
l S —

Concrete Syntax Tree versus Abstract Syntax Tree: Line 10

Line 10:

}

Concrete Syntax Tree for line 10:

l

|—>| NULL |

l

Abstract Syntax Tree for line 10:

|—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 11

Line 11:
There is nothing to process on line 11. Skip this line since there was nothing tokenized in the CST.

Concrete Syntax Tree versus Abstract Syntax Tree: Line 12

Line 12:

procedure main (void)

Concrete Syntax Tree for line 12:
[rocedu re F—— main F—— (F—— void ——) F—

Abstract Syntax Tree for line 12:
l DDDDDDDDD |—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 13

Line 13:

{

Concrete Syntax Tree for line 13:

[

}—>| NULL |

l

Abstract Syntax Tree for line 13:

|—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 14

Line 14:

int n;

Concrete Syntax Tree for line 14:
=] L] L]

Abstract Syntax Tree for line 14:
l AAAAAAAAAAA |—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 15

Line 15:

int sum;

Concrete Syntax Tree for line 15:

Abstract Syntax Tree for line 15:
l AAAAAAAAAAA |—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: Line 16

Line 16:
n = 100;

Concrete Syntax Tree for line 16:
l " —— - I3 F— : F—]

Abstract Syntax Tree for line 16:
l 5555555555 }—»I n |—>| 100 |—>| = |—>|

Concrete Syntax Tree versus Abstract Syntax Tree: Line 17

Line 17:

sum = sum of first n squares (n);

Concrete Syntax Tree for line 17:
l aum F— = emomtrsum | (F— " F——) —1 ; F—

Abstract Syntax Tree for line 17:
l SSSSSSSSSS }—p[sum |—>| sum_of_first_n_squares]—>| (}—>| n }—p[) |—>| - I—>|

Concrete Syntax Tree versus Abstract Syntax Tree: Line 18

Line 18:
printf ("sum of the squares of the first %d numbers = %d\n", n, sum);

Concrete Syntax Tree for line 18:

[S—— N . M I " T S : s R S : S 1 o : R

Abstract Syntax Tree for line 18:
l PRINTF '—»I sum of the squares of the first %d numbers = %d\n |—>| n l—)l sum I—>| NULL

Concrete Syntax Tree versus Abstract Syntax Tree: Line 19

Line 19:

}

Concrete Syntax Tree for line 19:

l

}—»I NULL |

l

Abstract Syntax Tree for line 19:

|—>| NULL |

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (1 = 0; (1 < 4) && (digit > -1); 1 =1 + 1)

The above FOR statement can be broken down into three components:
* Expression1:i=0;

» Expression 2: (i < 4) && (digit > -1);

 Expression3:i=j+1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 1):

l

FOR EXPRESSION 1 |—>I i }—>| 0 |—>| - |—>| NULL

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (1 = 0; (1 < 4) && (digit > -1); 1 =1 + 1)

The above FOR statement can be broken down into three components:
* Expression1:i=0;

» Expression 2: (i < 4) && (digit > -1);

 Expression3:i=j+1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 2):

FOR EXPRESSION 2 }—>| i |—>|] |—>| < |—>| digit |—>{ A +—>{ > H 88 }—.|

NULL

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (1 = 0; (1 < 4) && (digit > -1); 1 =1 + 1)

The above FOR statement can be broken down into three components:
* Expression1:i=0;

» Expression 2: (i < 4) && (digit > -1);

 Expression3:i=j+1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 3):

l

FOR EXPRESSION 3 l—»[i ‘—>| i |—>| 1 |—>| . |—>| -]—.| NULL

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (1 = 0; (1 < 4) && (digit > -1); 1 =1 + 1)

The above FOR statement can be broken down into three components:
* Expression1:i=0;

» Expression 2: (i < 4) && (digit > -1);

 Expression3:i=j+1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 1, Expression 2, and Expression 3):

FoRerEmnT ||] — 0 — —f i]

FoR l

R EXPRESSON 7

Concrete Syntax Tree versus Abstract Syntax Tree: example while statement

while ((1 < 4096) && (!found null))

Concrete Syntax Tree:

[e JR— i — [N 7 — 3 . o N] } of w — T N 7 [o o —f] N 7 } N

Abstract Syntax Tree:

l WHILE }—»{ i }—»[4096 }—>[< I—»[found_null I—»[| I—»[88 }—>|

Concrete Syntax Trees: More examples?

Yes! There are more examples of Concrete Syntax Trees posted to Canvas.
» Please see sample input test programs on Canvas for Programming Assignment 5: Abstract Syntax Tree.
For each of the five sample input test programs, I've also created a Concrete Syntax Tree.

You are welcome to view these additional examples during our in-class exercise.

	Slide 1: Introduction to exercise 6a: Abstract Syntax Tree (AST)
	Slide 2: What is an Abstract Syntax Tree (AST)?
	Slide 3: Important note about Abstract Syntax Tree construction
	Slide 4: Simple program integrating AST with Symbol Table
	Slide 5: Simple program integrating AST with Symbol Table
	Slide 6: Reflection: Simple program integrating AST with Symbol Table
	Slide 7: Reflection: Simple program integrating AST with Symbol Table
	Slide 8: Example program
	Slide 9: Example program
	Slide 10: Concrete Syntax Tree versus Abstract Syntax Tree: Line 1
	Slide 11: Concrete Syntax Tree versus Abstract Syntax Tree: Line 2
	Slide 12: Concrete Syntax Tree versus Abstract Syntax Tree: Line 3
	Slide 13: Concrete Syntax Tree versus Abstract Syntax Tree: Line 4
	Slide 14: Concrete Syntax Tree versus Abstract Syntax Tree: Line 5
	Slide 15: Concrete Syntax Tree versus Abstract Syntax Tree: Line 6
	Slide 16: Concrete Syntax Tree versus Abstract Syntax Tree: Line 7
	Slide 17: Concrete Syntax Tree versus Abstract Syntax Tree: Line 8
	Slide 18: Concrete Syntax Tree versus Abstract Syntax Tree: Line 9
	Slide 19: Concrete Syntax Tree versus Abstract Syntax Tree: Line 10
	Slide 20: Concrete Syntax Tree versus Abstract Syntax Tree: Line 11
	Slide 21: Concrete Syntax Tree versus Abstract Syntax Tree: Line 12
	Slide 22: Concrete Syntax Tree versus Abstract Syntax Tree: Line 13
	Slide 23: Concrete Syntax Tree versus Abstract Syntax Tree: Line 14
	Slide 24: Concrete Syntax Tree versus Abstract Syntax Tree: Line 15
	Slide 25: Concrete Syntax Tree versus Abstract Syntax Tree: Line 16
	Slide 26: Concrete Syntax Tree versus Abstract Syntax Tree: Line 17
	Slide 27: Concrete Syntax Tree versus Abstract Syntax Tree: Line 18
	Slide 28: Concrete Syntax Tree versus Abstract Syntax Tree: Line 19
	Slide 29: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 30: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 31: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 32: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 33: Concrete Syntax Tree versus Abstract Syntax Tree: example while statement
	Slide 34: Concrete Syntax Trees: More examples?

