
Introduction to exercise 6a: Abstract Syntax Tree (AST)

CS-460: Programming Language

Robert Bruce

What is an Abstract Syntax Tree (AST)?

• An Abstract Syntax Tree (AST) is an abridged version of a Concrete Syntax Tree (CST).

• An AST uses the same LCRS (left-child right-sibling) binary tree data structure to store
tokens as a CST.

• When applicable, the AST may also point into the symbol table (e.g. for function,
procedure, and variable declarations or assignment statements). Note: the pointer I'm
referring to does not impact left-child or right-sibling pointers. It would be a miscellaneous
extra attribute.

• Recall that a CST contains every token present in the input program parsed.
Consequently, a CST is syntactically verbose. In contrast to a CST, an AST removes
unnecessary tokens from a CST.

Important note about Abstract Syntax Tree construction

Note: The procedure for constructing an Abstract Syntax Tree (AST) can differ widely in
real-world implementation.

• I view the AST as a Concrete Syntax Tree that has been prepared for program
interpretation and execution.

• My ASTs contain all Boolean and numerical expressions (from assignment statements) in
postfix notation. This makes it easy to compute the result of the expression on-the-fly
during run-time of an interpreted program.

• The data structure for each element of my AST contains an extra field: a pointer into the
symbol table. For example, a variable listed in my AST would point to the appropriate
entry in the symbol table for that variable. This makes it very easy to know which variable
to update and/or retrieve a value from during run-time of an interpreted program.

Simple program integrating AST with Symbol Table

procedure main (void)

{

int sum;

sum = 1 + 2 * 3;

}

Simple program integrating AST with Symbol Table

Notes:

• The blue boxes represent elements from the symbol table.

• The green boxes represent an abstract syntax tree.

• Notice that expressions are converted to postfix order for operator precedence.

• Lines colored in blue represent access to the symbol table.

Reflection: Simple program integrating AST with Symbol Table

Note: in the previous example, you may believe I was inefficient in storing the variable "sum" - I concur my method is inefficient - as an extra element of

the Abstract Syntax Tree since the ASSIGNMENT element could point to "sum" in the Symbol table:

sum = 1 + 2 * 3;

Reflection: Simple program integrating AST with Symbol Table

Now consider another scenario:

procedure main (void)

{

int sum[10];

sum[5] = 1 + 2 * 3;

}

Example program

function int sum_of_first_n_squares (int n)

{

int sum;

sum = 0;

if (n >= 1)

{

sum = n * (n + 1) * (2 * n + 1) / 6;

}

return sum;

}

procedure main (void)

{

int n;

int sum;

n = 100;

sum = sum_of_first_n_squares (n);

printf ("sum of the squares of the first %d numbers = %d\n", n, sum);

}

Example program

Break the program into a series of lines:

1. function int sum_of_first_n_squares (int n)

2. {

3. int sum;

4. sum = 0;

5. if (n >= 1)

6. {

7. sum = n * (n + 1) * (2 * n + 1) / 6;

8. }

9. return sum;

10. }

11.

12. procedure main (void)

13. {

14. int n;

15. int sum;

16. n = 100;

17. sum = sum_of_first_n_squares (n);

18. printf ("sum of the squares of the first %d numbers = %d\n", n, sum);

19. }

Concrete Syntax Tree versus Abstract Syntax Tree: Line 1

Line 1:

function int sum_of_first_n_squares (int n)

Concrete Syntax Tree for line 1:

Abstract Syntax Tree for line 1:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 2

Line 2:

{

Concrete Syntax Tree for line 2:

Abstract Syntax Tree for line 2:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 3

Line 3:

int sum;

Concrete Syntax Tree for line 3:

Abstract Syntax Tree for line 3:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 4

Line 4:

sum = 0;

Concrete Syntax Tree for line 4:

Abstract Syntax Tree for line 4:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 5

Line 5:

if (n >= 1)

Concrete Syntax Tree for line 5:

Abstract Syntax Tree for line 5:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 6

Line 6:

{

Concrete Syntax Tree for line 6:

Abstract Syntax Tree for line 6:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 7

Line 7:

sum = n * (n + 1) * (2 * n + 1) / 6;

Concrete Syntax Tree for line 7:

Abstract Syntax Tree for line 7:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 8

Line 8:

}

Concrete Syntax Tree for line 8:

Abstract Syntax Tree for line 8:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 9

Line 9:

return sum;

Concrete Syntax Tree for line 9:

Abstract Syntax Tree for line 9:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 10

Line 10:

}

Concrete Syntax Tree for line 10:

Abstract Syntax Tree for line 10:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 11

Line 11:

There is nothing to process on line 11. Skip this line since there was nothing tokenized in the CST.

Concrete Syntax Tree versus Abstract Syntax Tree: Line 12

Line 12:

procedure main (void)

Concrete Syntax Tree for line 12:

Abstract Syntax Tree for line 12:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 13

Line 13:

{

Concrete Syntax Tree for line 13:

Abstract Syntax Tree for line 13:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 14

Line 14:

int n;

Concrete Syntax Tree for line 14:

Abstract Syntax Tree for line 14:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 15

Line 15:

int sum;

Concrete Syntax Tree for line 15:

Abstract Syntax Tree for line 15:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 16

Line 16:

n = 100;

Concrete Syntax Tree for line 16:

Abstract Syntax Tree for line 16:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 17

Line 17:

sum = sum_of_first_n_squares (n);

Concrete Syntax Tree for line 17:

Abstract Syntax Tree for line 17:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 18

Line 18:

printf ("sum of the squares of the first %d numbers = %d\n", n, sum);

Concrete Syntax Tree for line 18:

Abstract Syntax Tree for line 18:

Concrete Syntax Tree versus Abstract Syntax Tree: Line 19

Line 19:

}

Concrete Syntax Tree for line 19:

Abstract Syntax Tree for line 19:

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (i = 0; (i < 4) && (digit > -1); i = i + 1)

The above FOR statement can be broken down into three components:

• Expression 1: i = 0;

• Expression 2: (i < 4) && (digit > -1);

• Expression 3: i = i + 1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 1):

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (i = 0; (i < 4) && (digit > -1); i = i + 1)

The above FOR statement can be broken down into three components:

• Expression 1: i = 0;

• Expression 2: (i < 4) && (digit > -1);

• Expression 3: i = i + 1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 2):

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (i = 0; (i < 4) && (digit > -1); i = i + 1)

The above FOR statement can be broken down into three components:

• Expression 1: i = 0;

• Expression 2: (i < 4) && (digit > -1);

• Expression 3: i = i + 1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 3):

Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement

for (i = 0; (i < 4) && (digit > -1); i = i + 1)

The above FOR statement can be broken down into three components:

• Expression 1: i = 0;

• Expression 2: (i < 4) && (digit > -1);

• Expression 3: i = i + 1

Concrete Syntax Tree:

Abstract Syntax Tree (Expression 1, Expression 2, and Expression 3):

Concrete Syntax Tree versus Abstract Syntax Tree: example while statement

while ((i < 4096) && (!found_null))

Concrete Syntax Tree:

Abstract Syntax Tree:

Concrete Syntax Trees: More examples?

Yes! There are more examples of Concrete Syntax Trees posted to Canvas.

• Please see sample input test programs on Canvas for Programming Assignment 5: Abstract Syntax Tree.

• For each of the five sample input test programs, I've also created a Concrete Syntax Tree.

You are welcome to view these additional examples during our in-class exercise.

	Slide 1: Introduction to exercise 6a: Abstract Syntax Tree (AST)
	Slide 2: What is an Abstract Syntax Tree (AST)?
	Slide 3: Important note about Abstract Syntax Tree construction
	Slide 4: Simple program integrating AST with Symbol Table
	Slide 5: Simple program integrating AST with Symbol Table
	Slide 6: Reflection: Simple program integrating AST with Symbol Table
	Slide 7: Reflection: Simple program integrating AST with Symbol Table
	Slide 8: Example program
	Slide 9: Example program
	Slide 10: Concrete Syntax Tree versus Abstract Syntax Tree: Line 1
	Slide 11: Concrete Syntax Tree versus Abstract Syntax Tree: Line 2
	Slide 12: Concrete Syntax Tree versus Abstract Syntax Tree: Line 3
	Slide 13: Concrete Syntax Tree versus Abstract Syntax Tree: Line 4
	Slide 14: Concrete Syntax Tree versus Abstract Syntax Tree: Line 5
	Slide 15: Concrete Syntax Tree versus Abstract Syntax Tree: Line 6
	Slide 16: Concrete Syntax Tree versus Abstract Syntax Tree: Line 7
	Slide 17: Concrete Syntax Tree versus Abstract Syntax Tree: Line 8
	Slide 18: Concrete Syntax Tree versus Abstract Syntax Tree: Line 9
	Slide 19: Concrete Syntax Tree versus Abstract Syntax Tree: Line 10
	Slide 20: Concrete Syntax Tree versus Abstract Syntax Tree: Line 11
	Slide 21: Concrete Syntax Tree versus Abstract Syntax Tree: Line 12
	Slide 22: Concrete Syntax Tree versus Abstract Syntax Tree: Line 13
	Slide 23: Concrete Syntax Tree versus Abstract Syntax Tree: Line 14
	Slide 24: Concrete Syntax Tree versus Abstract Syntax Tree: Line 15
	Slide 25: Concrete Syntax Tree versus Abstract Syntax Tree: Line 16
	Slide 26: Concrete Syntax Tree versus Abstract Syntax Tree: Line 17
	Slide 27: Concrete Syntax Tree versus Abstract Syntax Tree: Line 18
	Slide 28: Concrete Syntax Tree versus Abstract Syntax Tree: Line 19
	Slide 29: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 30: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 31: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 32: Concrete Syntax Tree versus Abstract Syntax Tree: example FOR statement
	Slide 33: Concrete Syntax Tree versus Abstract Syntax Tree: example while statement
	Slide 34: Concrete Syntax Trees: More examples?

